
CHANDRA
X-ray Center 60 Garden St., Cambridge Massachusetts 02138 USA

MEMORANDUM

Date: October 3, 2012
From: Nancy RA. Wolk
To: ACIS Operations Team
Subject: Predicting the Amount of Earth in the ACIS cold radiator’s

field of view.
Cc: Tom Aldcroft, Dan Schwartz
Version: 0.9

Abstract

This memo describes the methods used in the C++ code earth acis FOV

which predicts the amount of Earth illuminating the Chandra ACIS cold radi-
ator. In particular, the geometry of the elements in the code will be discussed
and limitations that may impact the precision and accuracy of this model.

1 Why model the Earth illumination?

The ACIS focal plane (FP) temperature has been increasing over time dur-
ing perigee passages. In 2009, occasional focal plane temperature excursions
greater than 0.5◦C during observations started to be observed and examined
for the cause. One cause of this temperature increase was believed to be Earth
illuminating the cold radiator. The ACIS cold radiator is strapped to the focal
plane and radiates the heat from the focal plane out to space to keep the focal
plane temperature stable at -120◦C. However, during perigees, the apparent
size of the Earth is large and the illumination of the Earth on the cold radia-
tor can be enough to provide a heat flow to the focal plane. Behind the cold
radiator, in the -Z direction, is the warm radiator, which is connected to the
camera body to maintain a planned -60◦C temperature. Protecting the radi-
ators from space and the telescope are two irregularly shaped shades; the sun
shade, which faces space and the telescope shade, which faces the SIM. The
interiors of these shades are coated with goldized Kapton to reflect the radi-
ated heat from the radiators out to space. Figure 1 displays the configuration
of the radiators and shades.

To minimize the time when the Earth is in the field of view of the cold
radiator, a Flight Operations Team Mission Planning (FOT MP) tool pre-
dicted the times when the Earth could be warming the focal plane via the cold

1 / 20



Earth in ACIS cold radiator

Figure 1: The ACIS cold and warm radiators with the sun and telescope shades.
Support posts for the shades are not shown.

radiator. This tool only used a simple model of the shade shape and direct
illumination from the center of the Earth. This memo discusses the conversion
of this tool to C++ and the changes to the model. The FOT MP tool was
converted to C++ and a Python prototype. The algorithm for the calcula-
tion of the direct and reflected illumination of the cold radiator was changed
based on the Python code by Tom Aldcroft. All of the changes are discussed
below. The goals of this work is to use this as an input to an ACIS focal plane
temperature predictive model and to track the expected times of large Earth
shine on the radiators.

2 Conversion of the FOT MP tool

The FOT MP Mission Constraint Checker (MCC) is a tool within MATLAB
that allows mission planners to visualize different constraints while planning
a command load. The angle of the Earth to the center of the cold radiators
was one of the constraints. The inputs include the maneuvers for a week, and
the Chandra centered Earth and Solar ephemerides. These inputs are stored
in an internal structure within the MCC. An OFLS product, the maneuver
summary file can be used as an input and is read and stored as this inter-
nal structure. The maneuver summary file simply contains the times of the
quaternion update and the times of the maneuver start. A quaternion is a 4
dimensional representation of a rotation with the rotational angle combined

2 / 20



Earth in ACIS cold radiator

with the three coordinate rotation axis to create the values. It is important
to note that the quaternions are stored in an unconventional order with the
values x,y,z,w instead of w,x,y,z. The code has been programmed to work with
the former order. To convert a rotational axis (axis) and rotation angle (an-
gle) to a quaternion, one must follow the steps in equation 1. The resulting
quaternion must be normalized in case any value is close to zero.

q.x = axis.x ∗ sin(angle/2)
q.y = axis.y ∗ sin(angle/2)
q.z = axis.z ∗ sin(angle/2)
q.w = cos(angle/2)

(1)

The MCC is written in MATLAB, and is driven by a graphical user inter-
face. It interfaces with other MATLAB utilities such as the OR viewer and it
uses the internal structure of maneuvers that is generated on the fly for plan-
ning a week. While this fulfills the needs of the FOT MP, it does not provide
a good framework for the ACIS Ops load reviews.

With advice from the FOT, ACIS Ops converted the ACIS radiator sec-
tion of the MCC to C++. In addition to the model changes, the code was
redesigned as a stand alone C++ tool for use in the ACIS load reviews. One
advantage of the MATLAB code is its object oriented nature. Classes were
built to to match the MATLAB objects. Files could be read into classes that
were then passed into various functions within the code. This makes integrat-
ing the changes back into MATLAB for FOT MP much easier. In addition,
the classes used were mostly already built for another stand alone C++ tool,
bright sources, which determines when a bright X-ray source may be in the
ACIS FOV. This tool was also based on an MCC code.

The classes migrated from bright sources include Maneuver, which con-
tains all of the code to create intermediate quaternions during slews and dur-
ing holds, Time, a class to represent the time of an event based on different
inputs, and quaternion, a class to perform specific quaternion mathematical
operations. An Ephemeris class was added to manipulate the spacecraft, earth
and solar positions. The Time class contains XTime objects from Arnold Rots’
XTime.C code. This properly accounts for leap seconds and time zone con-
versions.

Once the MATLAB objects were matched with C++ classes, enhancements
such as a more accurate representation of the radiator shades and cold radiator
and reflections between the shades as contributors to the heating of the radiator
were added to the code. Tom Aldcroft developed a new method to calculate the
direct and reflected rays from the Earth striking the cold radiator. The original
MATLAB algorithm was removed and replaced with this method. Figure 2

3 / 20



Earth in ACIS cold radiator

illustrates the differences between the MATLAB “taco” shape and the actual,
asymmetrical, shape of the ACIS radiator shades.

The remainder of this memo will discuss the enhancements to the C++
code, and the limitations of this model. The appendices contain detailed doc-
umentation of the classes used.

Figure 2: The dotted line displaying the original FOT model “taco” shape versus the
actual shape (solid line) of the shades. While the “taco” is a good approximation,
the actual asymmetrical shape changes the nature of the calculations.

2.1 Flow of code

The basic flow of the earth acis FOV code is stored in main.cc and described
in Figure 3. The programming documentation of the Maneuver, Time and
Ephemeris classes are in the appendices. The first step in this tool reads
and interpolates the input files so the Maneuver and the Ephemeris objects
are on the same time frame and interval. The seed times are the start and
stop of the maneuvers for the week. This process synchronizes the ephmerides

4 / 20



Earth in ACIS cold radiator

and maneuvers to allow for a sequential operation on the elements of the
classes. The C++ standard template libraries Vector class is used to store the
unit vectors, times and quaternions. Intermediate quaternions are calculated
using Chandra parameters to replicate the movement of the spacecraft during
maneuvers.

Each time sample, currently set to 60 seconds, runs through a loop that
matches the correct quaternion with the corresponding Earth and Solar ephemerides
unit vectors. The Earth positional vector is in Earth Centered Inertial (ECI)
frame in kilometers. During the first interval, a random hemisphere of 1.56

positional vectors is created. This is the sample from which random positions
on the Earth are collected for each time interval.

The size of the Earth grid is determined by the smallest possible unit x
vector on the Earth as viewed by the cold radiator and forced to be between
100 and 10,000 points.

A corresponding number of random radiator points are generated. The
actual calculation of the solid angle of the Earth in the cold radiator FOV is
done in bf calc earth vis which determines if the rays from the radiator will
intercept the positions on the Earth. The final solid angle is written to a text
file in the main of the code.

2.2 Calculating the illumination of the radiators

The workhorse of earth acis FOV is the calc earth vis function. The flow
of this function is illustrated in figure 4. This function takes the quaternion,
the Earth positional vector, the altitude of Chandra from the center of the
Earth,and calculates the solid angle of the Earth illumination that impacts
the radiators at this time interval. The Earth illumination is broken down
into rays that directly illuminate the cold radiator and rays that reflect off the
radiator shade interior surfaces up to 10 reflections. After 10 reflections, the
illumination has been attenuated enough to not have a significant impact on
the heating of the radiator.

2.3 Creating a grid of points across the Earth

The calc earth vis function is executed once per time interval, however, this
function loops over an array of rays between the Earth and the cold radiator.
The first time calc earth vis is called, a static variable called “sphere xyz”
is created. This is a random hemisphere of points to represent the Earth’s
surface. Since the most the cold radiator will see of the Earth is a hemisphere
of the Earth, this hemisphere of unit vectors can be used multiple times as a
pool of vectors to sample random parts of the Earth. The random hemisphere

5 / 20



Earth in ACIS cold radiator

Figure 3: The main flow of the earth acis FOV software.

6 / 20



Earth in ACIS cold radiator

has 1.5e6 unit vectors. A C++ STL Vector container is also returned that
contains the X unit vectors to allow the selection from this pool.

Once the random hemisphere is created, at every 60 second interval, the
minimum X unit vector can be determined by the altitude of the spacecraft
and the radius of the Earth.

minX = cos(asin(R⊕/altitude))
gridsize = minP + (maxP − minP ) ∗ (1 − minX)

(2)

Where minP is the smallest number of points possible in the random hemi-
sphere grid and maxP is the size of the random hemisphere grid. The minP

is the higher of the ordinal position of the minx in a the sorted random hemi-
sphere or 100. The code will then randomly select gridsize vectors from the
random hemisphere to fill the positions on the Earth. This allows for both
a large number of random samples to select from (1.5e6) and a reasonable
maximum sample size to calculate for each time interval(1.0e5).

These vectors will correspond to the apparent size of the Earth at this time
interval and returns these unit vectors back to calc earth vis for creating rays
between the cold radiator and the Earth. To create a particular set of rays
from the cold radiator to the Earth, each point is rotated through the earth
quaternion for that point in time. This ensures a different sampling of the
Earth’s surface each time interval.

2.4 Creating a grid of points across the cold radiator

The radiator grid must be calculated each 60 second interval to match the
number of rays to the Earth. A loop over every grid element rotates the
element through the Earth quaternion and creates a ray for each grid point
center for this interval. If the resultant ray is positive in the Z direction and is
greater than a minimum X value (to prevent small number issues), it is stored
in a vector (rays to earth) to be passed to calc earth vis. Once all of the Earth
grid elements have been determined, the cold radiator grid is built with the size
of the rays to earth vector. The cold radiator generator creates two y positions
(y and -y) for each x position to allow for a symmetrical representation around
the y axis. The z position is fixed.

2.5 Does the radiator see the Earth?

To calculate the Earth illumination on the radiator, we use one of the radiator
position points and one ray to the Earth and determine if they intercept.
The Earth’s ray could also reflect between the radiator shade interior surfaces
and eventually illuminate the cold radiator. Each ray/radiator points pair is

7 / 20



Earth in ACIS cold radiator

reflected up to 10 times. Each reflection is checked for the ray intercepting the
cold radiator. The rays use an attenuation of 0.9 per reflection. This process
is repeated for all of the points on the Earth grid that were determined to
intercept the radiator. Once the ray is detected, the resultant illumination is
added to a counter. After all rays to the Earth have been passed through the
detection algorithm, the values in the direct and reflected counters are divided
by the total solid angle to calculate the final illumination in this time bin.

3 Output of the earth acis FOV code.

The output of the earth acis FOV code is an ascii file that contains the time
of the calculation, the the solid angle of the Earth for direct illuminations,
the solid angle of the Earth for reflected rays and the pitch and off nominal
roll of the spacecraft. The off nominal roll of the spacecraft does not always
match what is available in MATLAB and is of questionable value. The pitch
is correct.

4 Limitations of the model.

As with all software and models, there are limitations in this code. These
limitations may not give a completely precise measure of the solid angle of the
earth, but the model does a mostly accurate job.

The main limitations are:

• Predicted vs Actual ephemerides.

• Reflectivity of the Interior Surfaces.

The first limitation is the use of the predicted ephemerides. The software
uses the predicted Solar and Chandra ephemerides from the FOT. These data
are calculated using JPL software. The Chandra ephemeris is created in an stk
file, usually in a 200-300 day period. Using MATLAB, the Solar ephemeris can
be calculated. Since this is predicted, the values may be off, but most likely,
these are only small variations. A future enhancement is for the software to
use the ephemerides that are released by the FOT once a week. A difficulty is
to determine how to collect the solar ephemerides.

The reflections also use a reflectivity of 0.9, although the real value may be
different. The number suggested by thermal documents is 0.98, but this value
was lowered to account for possible changes to the surfaces over the mission.
The code also makes the assumption that the entire illumination is reflected
in toward the radiator. This is not true, but it works for an approximation.

8 / 20



Earth in ACIS cold radiator

create a random symmetrical 
raditor grid with the same
number of points as ray_to_earth

vector z 
below earth
radius?

earth set direct and reflected values 
to 0.0
return

reverse earth vector to come from radiator
convert eart vector from ECI to Chandra Body

determine earth altitude

Start

for each
ray_to_earth

calculate if ray hits or is 
reflected up to 10 reflections

Stop

calucalte total solid angle
in both direct and reflected
ray.

end for

hemisphere
for a random 

create 1.5e6 points 
First Interval ONLY

end for

roate ray from grid point 
thought earth quaternion

add to ray_to_earth vector
if +Z and min +X values.

grid point
for each earth

create earth quaternion.
Rotate each Earth vector through X Axis to

Create random grid of Earth points for this altitude.

yes

no

calc_earth_vis: executed for each 1 minute ephemeris values

Figure 4: Flow of the code that calculates the illumination of the radiators.

9 / 20



Earth in ACIS cold radiator

The code was tested against three tools: the MCC code to confirm the
center angles matched, the Spacecraft Tool Kit (STK) and Tom Aldcroft’s
python prototype. The STK software visualizes Chandra and the relative po-
sitions of the Earth and Sun. A projection of the Earth’s illumination was
added and this confirmed when the earth acis FOV code predicted illumi-
nation of the radiator. See the memo TBD in edit phase for a detailed analysis
of the comparison between the Python and C++ software.

5 Future Enhancements

The ultimate goal of this software is to allow the prediction of the ACIS FP
temperature. Since this tool was written, the main has been pulled into the
Python temperature modeling framework, Xija. This allows for the used of
the Earth heating on the cold radiator to be used for the ACIS FP model.
As of September, 2012, the ACIS FP model, which uses the C++ code here,
allows the FOT MP staff to determine the best thermal situations for a week
during the planning.

Expected enhancements may include calculating the heating power on the
radiators rather than the solid angle of the Earth. This would allow the con-
ductive transfer from the shades to be included. Another enhancement may to
be returning the expected heat flow towards or away from the focal plane in a
closed “ACIS FP-Cold Radiator” system. While this system is not quite phys-
ical, it is another step closer to the actual temperature predictions. Another
enhancement will be to also determine the Earth on the Warm Radiators to
predict the heat transfer to the ACIS camera body.

10 / 20



Earth in ACIS cold radiator

Appendix
This code used object oriented design in C++. The following appendices

describe the classes used, the variables included and the methods. This will
serve as documentation for the code in addition to the comments within the
code source.

Appendix A Ephemeris Class

This class reads, stores and interpolates the ephemeris for the sun and Chan-
dra. The class contains the following variables:

private:

vector<Vector3D> center; // The x,y,z position

vector<Vector3D> velocity; // the velocity in the 3 space

vector<double> length; // the length of each 3 space vector

vector<Vector3D> unit; // The unit vector of the center

string target; // comparison target

vector<Time> time; // Time array

bool apparent; // 0 for real position velocity, 1 for apparent pos/vel

int rows; // rows read into the arrays from eph files

double radius; // target’s radius. Set to 1 as default.

Most of the variables are stored in a Standard C++ Library vector class.
This is just to set up a FIFO for the code to loop over. The class Vector3D
will be discussed later. The variables in the class are documented as to the
meaning. One ephemeris file is stored in a single Ephemeris object.

A.1 Public Methods

The publicly accessible methods are:

public:

Ephemeris(); // Constructor

~Ephemeris(); // Destructor

Ephemeris(const Ephemeris&);//Copy Constructor

bool operator=(const Ephemeris&);//Assignment

//ACCESSORS

void setCenter(vector<Vector3D>); // set Center position

void setVelocity(vector<Vector3D>); // set center velocity

void setTarget(string); // set Target name

11 / 20



Earth in ACIS cold radiator

void setTime(vector<Time>); // set Time of position

void setApparent(bool); // set the apparent information

vector<Vector3D> getPosition(); // return the stored position

vector<Vector3D> getVelocity(); // return the stored velocity

vector<double> getLength(); //return the stored Length

vector<Vector3D> getUnit(); //return the stored unit vector

vector<Time> getTime(); // return the stored times

string getTarget(); //return the targetname

double getRadius(); // return the radius of the object

int getRows(); // return the size of the file

//Printing and actions on the Ephemeris object

void print(); // print the items in the object

int readEphemeris(string ,string); // read the emphermis file

int Interpolate(Time , Time, int, Ephemeris &); //cubic spline

Most of the public members are accessor functions to read or set a variable in
the class. The set functions allow for a manual override of a file for calculation
testing on a small sample of positions. The two important public member
functions are readEphemeris, which reads in the files and populates the class
and Interpolate. Interpolate uses the input start and stop times and a step
size in seconds. Then the ephemeris is interpolated using a cubic spline to
rebin the data to start at the start time over the step sizes. This allows for
the Maneuver (see below) and the Ephemeris objects to have the same start
times and time resolution.

A.2 Dependencies

The Ephemeris class requires the following header files from the C++ distri-
bution:

<iostream>

<cctype>

<cstdlib>

<string>

<vector>

<cassert>

<fstream>

<iomanip>

The local classes used within Ephemeris.cc are: ”Time.hh” and ”Vec-
tor3D.hh” and the code declares that it uses the std namespace. Additionally,

12 / 20



Earth in ACIS cold radiator

the C++ class XTime is now used to track the timing to prevent local host
machine timing issues.

Appendix B Vector3D Class

This simple class stores a three dimensional vector, just to keep it easier to
pass these around the functions and classes.

private:

double x;

double y;

double z;

B.1 Public Members

The public member functions are defined below:

public:

//Constructors

Vector3D();

Vector3D(double[]);

Vector3D(double,double,double);

//destructor

~Vector3D();

//Copy Constructor

Vector3D(const Vector3D&);

//Assignment operator

bool operator=(const Vector3D&);

//Accessors

double getX();

double getY();

double getZ();

void setX(double);

void setY(double);

void setZ(double);

//Functions

13 / 20



Earth in ACIS cold radiator

double getLength();

Vector3D getUnitVector();

void print();

void print(std::ostream&);

The print function is an overload of the << operator. This allows for easier
printing and debugging of this class.

B.2 Dependencies

The following standard C++ headers are required. This file must be linked
with the math libraries at compilation time.

<cstdio>

<cctype>

<cstdlib>

<string>

<cassert>

<iostream>

<cmath>

Appendix C Maneuver Class

The Maneuver class tracks the maneuvers of the spacecraft. This code involves
the majority of the calculations as it must follow a detailed pathway to track
the intermediate quaternions during a slew. It is important to remember that
in a slew, there are various jerks and accelerations as the telescope starts and
stops the slew. The calculations for the intermediate quaternions are discussed
below.

private:

vector<Quaternion> manProfile; // Profile for this maneuver

vector<Time> manTime; // Time vector for maneuver profile

Quaternion initial_Q; // the initial Quaternion for this maneuver

Quaternion final_Q; // the final Quaternion for this maneuver

Time start_time; // the start time of this maneuver

Time stop_time; // the stop time of this maneuver

double duration; // time for this maneuver in seconds

double * sarray; // pointer to temp array

// intermediate products polar coordinates needed to calculate maneuvers

double * phi;

14 / 20



Earth in ACIS cold radiator

double * dphi;

double * d2phi;

C.1 Public member functions

public:

//CONSTRUCTOR FUNCTIONS

Maneuver(Quaternion, Quaternion, double); //CONSTRUCTOR

~Maneuver(); // Destructor

Maneuver(const Maneuver & ); // constructor

Maneuver operator=(const Maneuver&); //copy constructor

//main workhorse

void makeTrends(int); // get intermediate Quats

double manvrTime(Quaternion,Quaternion); // find time between 2quaternions

//ACCESSORS

vector<Quaternion> getManProfile(); // return intermediate Quat

vector<Time> getManTime(); //return intermediate Time

Time getStart(); //return start of maneuver

Time getStop(); //return stop of maneuver

Quaternion getFinal(); //return final quat

Quaternion getInitial(); //return init quat

void print(); //Print the object

void printInfo(); //print info in object

The two functions of interest are makeTrends and manvrTime, are based on
MATLAB code and use the characteristics of Chandra to calculate the time
it takes to maneuver the telescope and the actual jerk and acceleration of
the telescope as it slews. The code was completely converted from the MAT-
LAB code. It breaks the slew into 7 segments and determines, using polar
coordinates, the quaternion for the time interval specified. This quaternion is
returned to allow the code to know exactly where the telescope is pointing at
any time during an orbit.

C.2 Dependencies

This class requires the following header files. Three macros are defined to
match the Chandra slew characteristics.:

iostream

15 / 20



Earth in ACIS cold radiator

cctype

cstdlib

string

vector

cassert

"quaternion.hh"

"Time.hh"

//CHANDRA HARDWARE CHARACTERISTICS

#define ALPHAMAX 2.18166e-6

#define DELTA 60.0

#define VMAX 0.001309

Appendix D The quaternion class

The pointing of the spacecraft is specified in a 4 dimensional vector called a
quaternion. Quaternions contain the x,y,z positions and w, the rotation. This
class was originally written by Angela Bennett as free ware. It was modified
to work with the current C++ and to only use double type quaternions as
opposed to the original container class.

private:

double w, x, y, z;

D.1 Member Functions

public:

//constructors

Quaternion(void);

Quaternion(double wi, double xi, double yi, double zi);

Quaternion(double v[4]);

Quaternion(const Quaternion& q);

#ifdef SHOEMAKE

//Quaternion

// -parameters : yaw, pitch, and roll of an Euler angle

// -creates a new quaternion based on the Euler elements passed in

// -used with Shoemakes code

Quaternion(double e[3], int order);

#endif

16 / 20



Earth in ACIS cold radiator

// -default destructor

~Quaternion();

//Overloaded operators

Quaternion operator = (const Quaternion& q);

Quaternion operator + (const Quaternion& q);

Quaternion operator - (const Quaternion& q);

Quaternion operator * (const Quaternion& q);

Quaternion operator / (Quaternion& q);

Quaternion& operator += (const Quaternion& q);

Quaternion& operator -= (const Quaternion& q);

Quaternion& operator *= (const Quaternion& q);

Quaternion& operator /= (Quaternion& q);

friend inline ostream& operator << (ostream& output, const Quaternion& q)

friend inline ostream& operator << (ostream& output, const Quaternion* q)

bool operator != (const Quaternion& q);

bool operator == (const Quaternion& q);

//ACCESSORS

double getZ();

double getY();

double getX();

double getW();

double setW(double wi);

//Quaternion Math

Quaternion pos_mult (const Quaternion& q);

double norm();

double magnitude();

Quaternion scale(double s);

Quaternion inverse();

Quaternion conjugate();

Quaternion UnitQuaternion();

void UnitVector(double v[3]);

void QuatRotation(double v[3]);

double Quat2unitRotation(double v[3]);

void Quat2RADec(double v[3]);

//EULER CODE

#ifdef SHOEMAKE

17 / 20



Earth in ACIS cold radiator

// - converts this quaternion into Euler angles

void toEuler(double e[3], int order);

#endif

The earth acis FOV code does not use the Euler angles, but it is documented
for completeness.

D.2 Dependencies

iostream

math.h

#ifdef SHOEMAKE

#include "EulerAngles.h"

#endif

#define PI 3.1415926535898

The EulerAngles.h file will not be discussed here. Please refer to the code base
for more information.

Appendix E The Time Class

The Time class was written to convert the different forms of time input strings
and store them as seconds in XTime. This allows for easier interpolation,
subtractions and conversions. XTime.C is a C++ class written by Arnold
Rots to support time conversions between different time systems. This fully
accounts for leap seconds and prevents a bug that was caused by using the
time system on a local machine.

private:

XTime item_time; // the item time

bool readString(std::string); //parse a string

bool readItems(int,int,int,int,int,double);//read the individual items

bool readManvTime(double); //read time in MNVR file

void convertDOY(int,int); //convert the DOY

E.1 Public Member Functions

public:

//Constructors

18 / 20



Earth in ACIS cold radiator

Time(); // constructor

Time(std::string); // constructor with a colon delimited string

Time(int, int,int,int,int,double); // constructor with Year,month,day,min,

// hour,seconds

Time(double); // using MNVR file format

Time(time_t); // using a time_t item

Time(const Time &); //Copy Constructor

~Time(); // destructor

//operator overloads

bool operator= (std::string); //Assignment operator/ variable STRING

bool operator= (double); //assignment operator/ variable DOUBLE

bool operator= (time_t); //assignment operator/ variable time_t

Time& operator= (const Time &); //assignment operator/ variable Time

Time operator+ (Time); //addition operator

Time operator+ (int); // addition overload to allow seconds to

//be added

double operator- (Time); //subtraction operator

bool operator> (Time);

bool operator< (Time);

bool operator== (Time);

//printing and accessors

void print(); //print

void printTime(std::ostream& ); //printTime

std::string getString(); // return date string

time_t getTime(); // return time struct

double getSeconds(); //return time in seconds

void setPtr(); //resetPTr based on time_t

//overload the << operator as a friend

friend

inline std::ostream & operator<<(std::ostream& out,

Time &obj)

The public members of the Time class are mostly overloads to allow for
easier manipulation of the event times. The different files read by the other
classes have different formats, so the idea is to create a fixed internal format.

19 / 20



Earth in ACIS cold radiator

E.2 Dependencies

The following libraries are required for the Time class.

cstdio

cctype

cstdlib

string

sstream

cassert

ctime

Xtime.h

iostream

20 / 20


