testlib

A library to help write test code

Copyright (©) 2006 Smithsonian Astrophysical Observatory
Parts are (© 1991 Texas Instruments Incorporated, with the following permisson notice:

Permission is granted to any individual or institution to use, copy, modify, and
distribute this software, provided that this complete copyright and permission
notice is maintained, intact, in all copies and supporting documentation.

Texas Instruments Incorporated provides this software "as is" without express
or implied warranty.

Chapter 1: Introduction 1

1 Introduction

testlib is a library of routines and C/C++ macros which make the creation of code for
testing libraries and programs a little easier.

The routines are available both to C and C++ programs, with the same API. The internals
are packaged a little differently (see Chapter 4 [Implementation], page 11).

The macros take an expression and its expected result, and print out a message describing
the test and the result of the equivalency. They keep track of the number of passes and
failures, and output a summary at the end of the session. The main benefit of using these
macros is that you don’t have to worry about all of the pretty printing required to get a
readable test report.

2 testlib

2 Usage

The first macro invoked should be START, which initiates a testing session. The test program
than calls the TEST. .. macros, and at the end of the session calls SUMMARY. Generally, the
result of FAILURE should be used to return an appropriate exit value at the conclusion of
the test program.

For example, here’s a snippet of the test code for the test library itself:

START("Testing Test");

{
int a = 3;
int b = 2;
int ¢ = 1;

TEST("TEST, PASSED", 1, 1);
TEST("TEST, PASSED", a, a);
TEST("TEST, **FAILED*x", 1, 0);
TEST("TEST, **FAILED**", a, b);

TEST_RUN("TEST_RUN, PASSED", a = 4, a, 4);
TEST_RUN("TEST_RUN, **FAILED**", a = 3, a, 4);

double d =
double e

nn
N N
N N
w N

TEST_RUN_FP_TOL("TEST_RUN_FP_TOL, **FAILED**", double g = d + 200
DBL_EPSILON, g, d, 20 * DBL_EPSILON);
}

SUMMARY () ;

The test output includes the line number where the test was called, which in some cases
is inappropriate. Each of the TEST macros exists in an additional form with a suffix of
__LINE. These forms take an additional leading parameter, the line number to output. For
example

TEST_LINE(33, "TEST, PASSED", 1, 1);

Chapter 3: Macros 3

3 Macros

3.1 Adminstrative Macros

Macros to start and finish test suites.

3.1.1 START

start a testing session

Synopsis

#include <testlib.h>

START (title)
Parameters

title the title to output
Description

START is called at the beginning of a test session. It resets internal counters and outputs
a header to the standard output stream which includes the provided title.

Example
START("Txt class");

3.1.2 SUMMARY

output a summary of the tests

Synopsis

#include <testlib.h>
SUMMARY ();

Description

SUMMARY is called at the end of a testing session to output the number of tests which
have passed and failed.

Example
SUMMARY () ;

3.1.3 FAILED

return the number of tests which have failed

4 testlib

Synopsis

#include <testlib.h>

int FAILED();

Description

FAILED returns the number of tests which have failed. This is useful for constructing an
exit value for the test program to alert other software (make, for instance) that there has
been a failure.

Example
return FAILED() ? EXIT_FAILURE : EXIT_SUCCESS;

3.2 Test Macros
Macros to test things.
3.2.1 TEST

test an expression against a value

Synopsis

#include <testlib.h>

TEST(desc, expr, res)
TEST_LINE(line, desc, expr, res)

Parameters

line

the line number to output

desc a short description of the test being performed

expr an expression to evaluate

res the expected result of the expression
Description

TEST is called to perform a test of an expression against an expected result. It essentially
performs the test expr == res .

Example

TEST("+= operator, length",
hh.get_length(), ff.get_length() + gg.get_length() - 1);

Chapter 3: Macros 5)

3.2.2 TEST_PASS
indicate that a test passed
Synopsis

#include <testlib.h>

TEST_PASS(desc)
TEST_PASS_LINE(line)

Parameters

line
the line number to output

desc a short description of the test being performed
Description

TEST_PASS is called to indicate that a test passed. It is usually used when the de-

termination of such is more complicated than allowed by the other testlib mechanisms.

Example
TEST_PASS("+= operator, length");

3.2.3 TEST_FAIL
indicate that a test failed
Synopsis

#include <testlib.h>

TEST_FAIL(desc)
TEST_FAIL_LINE(line)

Parameters

line
the line number to output

desc a short description of the test being performed
Description

TEST_FAIL is called to indicate that a test failed. It is usually used when the determi-

nation of such is more complicated than allowed by the other testlib mechanisms.

6 testlib

Example
TEST_FAIL("+= operator, length");

3.2.4 TEST_FP

test a floating point expression against a value, with a tolerance range

Synopsis

#include <testlib.h>

TEST_FP(desc, expr, res)
TEST_FP_LINE(line, desc, expr, res)

TEST_FPABS(desc, expr, res)
TEST_FPABS_LINE(line, desc, expr, res)

Parameters

line

the line number to output

desc a short description of the test being performed

expr a floating point expression to evaluate

res the expected result of the floating point expression
Description

TEST_FP is called to determine the equivalence of a floating point expression against an
expected result within a tolerance range. If the relative numeric difference between the
two values is less than the default tolerance of 100.0 * DBL_EPSILON, they are considered
equivalent. (DBL_EPSILON is defined in ‘/usr/include/float.h’). To specify a tolerance,
see Section 3.2.5 [TEST_FP_TOL], page 6.

TEST_FPABS is similar, but uses an absolute tolerance check.

Example
TEST_FP("float equiv", 33 * 2.2, 36);
3.2.5 TEST_FP_TOL

test a floating point expression against a value, within a tolerance range

Synopsis

#include <testlib.h>

TEST_FP_TOL(desc, expr, res, tol)

Chapter 3: Macros 7

TEST_FP_TOL_LINE(line, desc, expr, res, tol)

TEST_FPABS_TOL(desc, expr, res, tol)
TEST_FPABS_TOL_LINE(line, desc, expr, res, tol)

Parameters

line

the line number to output

desc a short description of the test being performed

expr a floating point expression to evaluate

res the expected result of the floating point expression

tol the tolerance within which the expr and the res are equivalent.
Description

TEST_FP_TOL is called to determine the equivalence of a floating point expression against
an expected result within a specified tolerance range. If the relative numeric difference
between the two values is less than the specified tolerance, they are considered equivalent.

TEST_FPABS_TOL is similar, but uses an absolute tolerance check.

Example
TEST_FP_TOL("float equiv", 33 * 2.2, 36, 2);

3.2.6 TEST_RUN_FP

Execute a statement, then test a floating point expression against a value, within a tolerance
range.

Synopsis
#include <testlib.h>

TEST_RUN_FP(desc, stmt, expr, res)
TEST_RUN_FP_LINE(line, desc, stmt, expr, res)

Parameters
line
the line number to output
desc a short description of the test being performed

stmt a statement to be executed, independent of the expression. the
statement may be arbitrarily complex.

8 testlib

expr a floating point expression to evaluate
res the expected result of the floating point expression
Description

TEST_RUN_FP is called to determine the equivalence of a floating point expression against
an expected result within a specified tolerance range. If the numeric difference between the
two values is less than the default tolerance of 100.0 * DBL_EPSILON, they are considered
equivalent. (DBL_EPSILON is defined in ‘/usr/include/float.h’). To specify a tolerance,
see Section 3.2.7 [TEST_RUN_FP_TOL], page 8.

Example
TEST_RUN_FP("float equiv", foo(&x), 33 * x, 36);

3.2.7 TEST_RUN_FP_TOL

Synopsis
#include <testlib.h>

TEST_RUN_FP_TOL(desc, stmt, expr, res, tol)
TEST_RUN_FP_TOL_LINE(line, desc, stmt, expr, res, tol)

Parameters
line
the line number to output
desc a short description of the test being performed

stmt a statement to be executed, independent of the expression. the
statement may be arbitrarily complex.

expr a floating point expression to evaluate

res the expected result of the floating point expression

tol the tolerance within which the expr and the res are equivalent.
Description

TEST_RUN_FP_TOL is called to determine the equivalence of a floating point expression
against an expected result within a specified tolerance range. If the numeric difference
between the two values is less than the specified tolerance, they are considered equivalent.

Example
TEST_RUN_FP_TOL("float equiv", foo(&x), 33 * x, 36, 0.01);

Chapter 3: Macros

3.2.8 TESTSTRING

test two strings for equivalence

Synopsis

#include <testlib.h>

TESTSTRING(desc, str, res)
TESTSTRING_LINE(line, desc, str, res)

Parameters

line

the line number to output

desc a short description of the test being performed
strl the first string
res the expected string

Description

TESTSTRING is called to perform a test of a string against an expected result.

Example
TESTSTRING("string test", foo, "foo");
3.2.9 TEST_RUN

Execute a statement, then test an expression against a value
Synopsis
#include <testlib.h>

TEST_RUN(desc, stmt, expr, res)
TEST_RUN_LINE(line, desc, stmt, expr, res)

Parameters
line
the line number to output
desc a short description of the test being performed

stmt a statement to be executed, independent of the expression. the
statement may be arbitrarily complex.

expr an expression to evaluate

res the expected result of the expression

10 testlib

Description

TEST_RUN is called to determine the equivalence of an expression with an expected result.
The supplied stmt is first executed.

Example
TEST_RUN("equiv", foo(&x), 33 * x, 36);

Chapter 4: Implementation 11

4 Implementation

testlib is implemented as a set of C/C++ preprocessor macros which invoke a few compiled
routines. In order to cut down on name space pollution, the C++ routines are stuck in a
structure called Test. For C, the routines are given the prefix Test_. The user, of course,
need not know this, unless these conventions interact with user code.

Table of Contents

3.1 Adminstrative MacroS.t
3. 1.1 START . o
3.1.2 SUMMARY ..o
3.1.3 FAILED ...

3.2.1 TES T
3.2.2 TEST_PASS ...
3.23 TEST_FAIL.o e
324 TEST _FP ...
325 TEST.FP_TOL......coo e
326 TEST RUN_FP
3.27 TEST_RUN_FP_TOL.......
328 TESTSTRING ...
329 TEST_RUN ... e

4 Implementation................................

	Introduction
	Usage
	Macros
	Adminstrative Macros
	START
	SUMMARY
	FAILED

	Test Macros
	TEST
	TEST_PASS
	TEST_FAIL
	TEST_FP
	TEST_FP_TOL
	TEST_RUN_FP
	TEST_RUN_FP_TOL
	TESTSTRING
	TEST_RUN

	Implementation

