linklist

a simple single and doubly linked list package
edition 2.0.2 for 1linklist version 2.0.2
11 September 2009

Diab Jerius

Copyright (©) 2006 Smithsonian Institution

linklist is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

linklist is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA

Table of Contents

1 Copying . ..ot 1
2 Usage.......coiii 3
2.1 OVEIVIEW ..ot 3
2.2 Data Encapsulation 4
2.3 Node CompariSOmnvuttt et 4
3 Library Routines................................ 7
3.1 Singly Linked Lists........c.ooiiiiiii 7
3.1.1 sllcount ... 7
3.1.2 sllodelete.o 7
3.1.3 sll_udelete. ... 8
3.1.4 sllodestroy. . ..o 8
3.1.5 sll_destroy_head o i 9
3.1.6 sll_destroy_tail 9
3.1.7 sll_destroy_dnode.......... ... i 10
3.1.8 sll_destroy node...........cooiiiiiiiiiiii 10
3.1.9 sll_detach_head_node.......... 11
3.1.10 sll.detach_node 11
3.1.11 sllchead . ..o 12
3.1.12 sllthead_node ... 12
3.1.13 SlHiinsertot 13
3.1.14 sll_insert_head 13
3.1.15 sll_insert_head_node............ 14
3.1.16 sll_insert_node 14
3.1.17 slliimsert_tail. ... 15
3.1.18 slliinsert_tail.node.......... 15
3119 SHJOIM . et 16
3.1.20 SHmewW. ..o 17
3.1.21 SHmext .o 17
3.1.22 slllmext_node i 18
3.1.23 slllnode_get_data ... 18
3.1.24 sllinode_put_data........... .o i 18
3125 SHprev ..o 19
3.1.26 sll_prev_node ... 20
3.1.27 sll_search 20
3.1.28 sll_search_node. o 21
3.1.29 sll_sizeof_node 22
3.1.30 sltail oo 22
3.1.31 sll_tail_node.o 22
3.1.32 SHAraverse.t 23
3.1.33 sll_traverse_d. ... 23

3.1.34 Sll_utraverseooi it 24
3.1.35 sll_utraverse_dco i 25
3.2 Doubly Linked Lists. ... 27
3.2 1 dll_count........cooii 27
3.2.2 dll_delete ..o 27
3.2.3 dll_udelete ... 27
3.2.4 dllodestroy 28
3.2.5 dll_destroy_head o 29
3.2.6 dll_destroy_tail........ ... 29
3.2.7 dll_destroy_dnode i 30
3.2.8 dll_destroy_node 30
3.2.9 dll_detach_head_node 31
3.2.10 dll_detachnode............coo i 31
3.2.11 dlllhead ..o 32
3.2.12 dllLhead-node..........oo i 32
3.2.13 dlIinsert. 32
3.2.14 dlllinsert_head 33
3.2.15 dlllinsert_head_node 34
3.2.16 dlllinsert_node......... ... 34
3.2.17 dlllinsert_tail 35
3.2.18 dll.insert_tail.node......... 35
3.2.19 dlljoin . oovee 36
3.220 dAlnew ... 36
3.2.21 dllmext. ..o 37
3.2.22 dlllnext_node...... 37
3.2.23 dlllnode_get_datao 38
3.2.24 dlllnode_put_data...........ccooiiiiiii 38
3.2.25 dllprev. ... 39
3.2.26 dlloprev_nodeo 39
3.2.27 dllsearch 40
3.2.28 dll_search_node i 41
3.2.29 dllsizeofnode...........co i 41
3.2.30 dlltail. ... 42
3.2.31 dll_tailnode........ .o 42
3.2.32 dltraverse i 42
3.2.33 dll_traverse_d 43
3.2.34 dll_utraverse 44
3.2.35 dll_utraverse_d 45

ii

Chapter 1: Copying 1

1 Copying

The software described by this manual is copyright (©) 2006 Smithsonian Institution. All
rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Chapter 2: Usage 3

2 Usage

linklist is a package of routines which implements both singly and doubly linked lists.

Functions supported by this package include searches; list traversals in with actions
performed at each node; detachment and reattachment of nodes.

2.1 Overview

Functions are available for both singly and doubly linked lists. Certain functions are ex-
tremely expensive for singly linked list, but are included for completeness. Those functions
which operate on singly linked lists have a prefix of ‘s11_’, those which operate on doubly
linked lists one of ‘d11_’. In the discussion which follows, the prefix is specified as ‘7?11’
except in cases where the function is available only for a specific type of list.

This package provides two, parallel, interfaces to lists. The first, preferred, method, is
to return results from searches, etc. as node data rather than as references to nodes. This
helps shield the user from the vagaries of the list implementation, and, in most cases, is
really what the user wants.

The second method deals directly with node handles. This is generally more efficient,
but requires more care by the user. It also permits more specialized manipulations, such as
moving nodes between lists without the need to create and destroy nodes. It’s also the only
way to have the user step through the list (there is a method of automatic list traversal with
a callback function at each node). The routines which work with node handles generally
have the string ‘node’ in their names.

Lists are constructed with ?711_new and are destroyed with ?711_delete or 711_udelete.
While it is possible to insert data without any intrinsic order (inserting at the head or tail of
the list, for example), it is also possible to insert data according to a user defined collating
sequence. A comparison function to implement this order is passed to the list creation
routines. Note that there is no consistency check made if the user chooses to mix sorted
inserts with other inserts.

Nodes are created and inserted into lists with ?11_insert, ?11_insert_head, 711_
insert_tail. Detached nodes (detached with ?11_detach_node) may be inserted with
?11_insert_node, 711_insert_head_node, and ?11_insert_tail_node.

Nodes can be removed from lists either by completely destroying them, via ?11_destroy,
?711_destroy_head, 711_destroy_tail, 711_destroy_node, or by detaching them from
the list via ?711_detach_node. The latter is useful if a node is to be moved from one list to
another. Detached nodes are themeselves destroyed with 711_destroy_dnode. Two lists
may be joined efficiently via ?11_join.

A list is searched with ?711_search, or ?711_search_node. The first returns a pointer to
the user data, the last a pointer to the node.

The head and tail nodes are accessed via ?11_head, ?11_tail, ?11_head_node, and
?11_tail_node. The latter two return handles to the appropriate node.

The list can be traversed and an action performed at each node traversals via 711_
traverse and 711_utraverse. The latter provides for the passing of extra data to the user

Chapter 2: Usage 4

provided action routine. Doubly linked lists can be traversed either from head to tail or
from tail to head.

Once a specific node has been identified via any of the node handle retrieval routines,
various manipulations are possible. It can be detached from the list (?11_detach_node); you
can find its predecessor or successor nodes (?11_next_node, ?711_prev_node), predecessor
or successor data (?11_next, ?711_prev); its data can be retrieved and modified (?11_node_
get_data; and ?11_node_put_data); and you can delete it (?11_destroy_node);.

The number of nodes in a list is available via ?11_count. The size of a node is available
via ?711_sizeof_node.

2.2 Data Encapsulation

Each node contains a data pointer which associates a separate user-supplied data structure
with the node. The pointer is stored at node creation, and is passed back after searches, etc.
Nodes do not contain any user data. The user is responsible for deallocating any data when
individual nodes are destroyed. When deleting entire list via 711_delete, a user supplied
routine will be invoked on each node’s data pointer, if requested.

2.3 Node Comparison

There are two situations in which nodes will be compared, either to other nodes or to
key data. During collated node insertion, the inserted node’s data is compared against
other nodes’ data to determine the proper ordering of the nodes. This operation uses the
comparison routine passed to 711_new when the list is created. The second situation is
during searches of the list, where node data is compared to some user specified data. Since
the comparison routine passed to ?11_new assumes the same form for both pieces of data
passed to it for comparison, using it would require that the user create a dummy user node
data structure (the same as the one associated with each node), and fill it with the key
data, which in most instances will probably be one field. 1inklist provides the possibility
of using another comparison routine (passed to the search or destroy routines), which may
compare data with two dissimilar forms. For example, assume that the user node data has
the following structure, and keys on the ‘id’ value:

typedef struct
{

int id;
char *name;
} UserNodeData;

The node comparison routine, used to compare nodes during insertion, would look like this:

int node_node_compare(const void *dpl, const void *dp2)

{
return ((UserNodeData *)dpl)->id - ((UserNodeData *)dp2)->id;
}

If you want to search the resultant list, and not create a dummy UserNodeData structure,
construct the search/destroy comparison routine as follows:

Chapter 2: Usage 5)

int key_node_compare(const void *dpl, const void *dp2)
{

return *((int *) dpl) - ((UserNodeData *)dp2)->id;
3

and pass the search/destroy routine a pointer to an int set equal to the id for which you're
searching.

Chapter 3: Library Routines 7

3 Library Routines

3.1 Singly Linked Lists
3.1.1 sll_count

Determine the number of nodes in a singly linked list.

Synopsis

#include <linklist/linklist.h>

size_t sll_count(SLinkList ull);

Parameters

SLinkList ull
the list to count

Description

This function returns the number of nodes in a list. It is an inexpensive routine to call.

Returns

It returns the number of nodes in the list, ‘0’ if the passed pointer is NULL.

3.1.2 sll_delete
Delete a singly linked list.

Synopsis
#include <linklist/linklist.h>

void sll_delete(
SLinkList ull,
void (xufree) (void x*)

)
Parameters

SLinkList ull
the linked list to be deleted

void (*ufree) (void *)
a function called at each link to delete user data. it may be SLL_
NULL_DELETE

Description

s11_delete traverses a linked list, calling a user-supplied function at each node in the list,
then deleting the node. Finally it deletes the list header.

Chapter 3: Library Routines 8

3.1.3 sll_udelete
Delete a singly linked list.

Synopsis
#include <linklist/linklist.h>

void sll_udelete(
SLinkList ull,
void (*ufree) (void *,void *),
void *udata

)
Parameters

SLinkList ull
the linked list to be deleted

void (xufree) (void *,void *)
a function called at each link to delete user data. it may be SLL_
NULL_DELETE

void *udata

a pointer to data to be passed to the action routine

Description

s11l_udelete traverses a linked list, calling a user-supplied function at each node in the
list, then deleting the node. Finally it deletes the list header. This routine differs from
s11_delete in that it can pass along a pointer provided by the calling routine to the action
routine, allowing arbitrary data to be available to the action routine.

3.1.4 sll_destroy

Destroy a node in a singly linked list.

Synopsis
#include <linklist/linklist.h>

void *sll_destroy(
SLinkList ull,
void *data,
int (*cmp) (const void *,const void *)

)
Parameters

SLinkList ull
the list to search

void *data
the data to search for

Chapter 3: Library Routines 9

int (*cmp) (const void *,const void *)
The address of a comparison function. Set to SLL_NULL_CMP to use
the list’s initial comparison function.
Description

s11_destroy searches a linked list for a node which compares equivalently to the passed
data. It removes the node from the list and deallocates the memory associated with it. The
user must destroy the data referenced by the node’s data pointer.

It uses the passed comparison routine, if available. If not, it uses that with which the
list was initialized. If that is not available, a segmentation violation is unavoidable. In the
former case the passed data need not have the same form as the data stored in the node.

The comparison routine is called with the passed data as the first argument and the
node’s data as the second argument. It must return ‘-1’, ‘0’, or ‘1’ if, respectively, the first
argument is less than, equal to, or greater than the second.

Returns
It returns the node’s data pointer if the node was found, NULL otherwise.
3.1.5 sll_destroy_head

Remove the head node from a singly linked list and destroy it.

Synopsis
#include <linklist/linklist.h>

void #*sll_destroy_head(SLinkList ull);

Parameters

SLinkList ull
the list from which to remove the node

Description

This routine removes the head node from the specified list and deallocates the memory
associated with it. The user must destroy the data referenced by the node’s data pointer.

Returns

It returns the node’s data pointer. If the list is empty, it returns NULL.
3.1.6 sll_destroy_tail

Remove the tail node from a singly linked list and destroy it.

Synopsis
#include <linklist/linklist.h>

void *sll_destroy_tail(SLinkList ull);

Chapter 3: Library Routines 10

Parameters

SLinkList ull
the list from which to remove the node

Description

This routine removes the tail node from the specified list and deallocates the memory
associated with it. The user must destroy the data referenced by the node’s data pointer.

Returns

It returns the node’s data pointer. If the list is empty, it returns NULL.
3.1.7 sll_destroy_dnode

Deallocate the memory associated with a detached node.

Synopsis
#include <linklist/linklist.h>

void sll_destroy_dnode(SLLNode unode) ;

Parameters

SLLNode unode
the node to destroy

Description

This routine deallocates the memory associated with a detached node. The user must have
already destroyed the data associated with the node. The node handle must have been
returned by sl1_detach_node.

3.1.8 sll_destroy_node

Remove a node from a singly linked list and destroy it.

Synopsis
#include <linklist/linklist.h>

void *sll_destroy_node (
SLinkList ull,
SLLNode unode

)3

Parameters

SLinkList ull
the list from which to remove the node

SLLNode unode
the node to remove

Chapter 3: Library Routines 11

Description

This routine removes the passed node from the specified list and deallocates the memory
associated with it. The user must destroy the data referenced by the node’s data pointer.

Returns

It returns the node’s data pointer if the node is not NULL, NULL otherwise.

3.1.9 sll_detach_head_node
Detach the head node of a list.

Synopsis
#include <linklist/linklist.h>

SLLNode sll_detach_head_node(SLinkList ull);

Parameters

SLinkList ull
the list in question

Description

This routine detaches the head node of a list from the list and returns a handle to the
detached node.

Returns

It returns a handle to the node upon success, NULL on failure.

3.1.10 sll_detach_node
Remove a node from a singly linked list.
Synopsis
#include <linklist/linklist.h>
void sll_detach_node(
SLinkList ull,
SLLNode unode
)
Parameters

SLinkList ull
the list from which to detach the node

SLLNode unode
the node to detach

Chapter 3: Library Routines

Description

12

This routine removes a node from a list without destroying it. The user is responsible for

its subsequent care.

Returns

It returns a handle for the detached node.

3.1.11 sll_head
Get the data of the head node of a list.

Synopsis
#include <linklist/linklist.h>

void *sll_head(SLinkList ull);

Parameters

SLinkList ull
the list in question

Description
Get the data of the head node of a list.

Returns

It returns the data of the head node of a list, NULL if the list is empty.

3.1.12 sll_head_node
Get a node handle to the head node of a list.

Synopsis
#include <linklist/linklist.h>

SLLNode sll_head_node(SLinkList ull);

Parameters

SLinklList ull
the list in question

Description

Get a node handle to the head node of a list.

Returns

It returns the node handle of the head node of a list, NULL if the list is empty.

Chapter 3: Library Routines 13

3.1.13 sll_insert

Create and insert a node into a singly linked list.

Synopsis
#include <linklist/linklist.h>

int sll_insert(
SLinkList ull,
void *data

)
Parameters

SLinkList ull
a handle to the list into which to insert the node

void *data
a pointer to the new node’s data
Description

sll_insert creates a node, stores the passed data pointer in it, and inserts the node in the
list in the collating order determined by the comparison function with which the list was
initialized by s11_new.

Returns

It returns zero if the insert was successful, non-zero if it was unable to create the new node

3.1.14 sll_insert_head
Create and insert a node at the head of a singly. linked list

Synopsis
#include <linklist/linklist.h>

int sl1l_insert_head(
SLinkList ull,
void *data

)
Parameters

SLinkList ull
a handle to the list into which to insert the node

void *data
a pointer to the new node’s data

Chapter 3: Library Routines 14

Description

This routine creates a node, inserts the passed data pointer in it, and attaches the node to
the head of the list.

Returns

It returns zero if the insert was successful, non-zero if it was unable to create the new node.

3.1.15 sll_insert_head_node
Insert a detached node at the head of a singly linked list.

Synopsis
#include <linklist/linklist.h>

int sll_insert_head_node(
SLinkList ull,
SLLNode unode

)

Parameters

SLinkList ull
a handle to the list into which to insert the node

SLLNode unode
the node to insert
Description
This routine inserts a node at the head of a list. The node handle must have been obtained
from sll_detach_node.
Returns

It returns non-zero if the node is NULL, zero otherwise.

3.1.16 sll_insert_node

Insert a detached node into a list.

Synopsis
#include <linklist/linklist.h>

int sll_insert_node(
SLinkList ull,
SLLNode unode

)

Chapter 3: Library Routines 15

Parameters

SLinkList ull
a handle to the list into which to insert the node

SLLNode unode
the node to insert

Description

This routine inserts a detached node into a list in the collating sequence determined by the
comparison function with which the list was initialized by s11_new. It assumes that the
list’s insert/delete comparison function can be applied to the data in the passed node. The
node handle must have been obtained from s11_detach_node.

Returns

It returns non-zero if the node is NULL, zero otherwise.

3.1.17 sll_insert_tail

Create and insert a node at the tail of a singly linked list.

Synopsis
#include <linklist/linklist.h>

int sll_insert_tail(
SLinkList ull,
void *data
)
Parameters

SLinkList ull
a handle to the list into which to insert the node

void *data
a pointer to the new node’s data

Description

This routine creates a node, inserts the passed data pointer in it, and attaches the node to
the tail of the list.

Returns

It returns zero if the insert was successful, non-zero if it was unable to create the new node.

3.1.18 sll_insert_tail_node
Insert a detached node at the tail of a list.

Chapter 3: Library Routines 16

Synopsis
#include <linklist/linklist.h>
int sll_insert_tail_node(
SLinkList ull,
SLLNode unode
)
Parameters

SLinkList ull
a handle to the list into which to insert the node

SLLNode unode
the node to insert

Description

This routine inserts a node at the tail of a list. The node handle must have been obtained
from s11l_detach_node.

Returns
It returns non-zero if the node is NULL, zero otherwise.
3.1.19 sll_join
Join two lists.
Synopsis
#include <linklist/linklist.h>

void sll_join(
SLinkList dst_ull,
SLinkList src_ull
)

Parameters

SLinkList dst_ull
the destination list

SLinkList src_ull
the source list

Description

This routine moves the nodes in a list to another. If the destination list has a preferred
order (if a comparison function was specified when the list was created), the new nodes are
inserted in order. (This implies that the data in the source list have the same format as
those in the destination list.) If it has no preferred order, the source list is simply appended
to the destination list. The source list is not destroyed, it is simply emptied.

Chapter 3: Library Routines 17

3.1.20 sll_new
Create a new singly linked list.

Synopsis
#include <linklist/linklist.h>

SLinkList sll_new(int (*cmp) (const void *,const void *));

Parameters

int (*cmp) (const void *,const void *)
a comparison function for use in searches of the linked list, may be
SLL_NULL_CMP for unordered lists

Description

This routine creates a new list structure. If the list is to have some intrinsic order, a function
defining that order should be passed. The comparison routine is called with two node data
pointers as the arguments. It must return ‘-1’, ‘0’ or ‘1’ if, respectively, the first argument
is less than, equal to, or greater than the second.

Returns

It returns a pointer to a new linked list, or NULL if it can’t allocate it

3.1.21 sll_next

Retrieve the data in the node following a given node in a list.

Synopsis
#include <linklist/linklist.h>

void *sll_next(
SLinkList ull,
SLLNode unode
)
Parameters

SLinkList ull
the list which contains the node

SLLNode unode
the preceding node

Description

Retrieve the data in the node following a given node in a list.

Returns

It returns NULL if there are no more nodes, else a pointer to the data.

Chapter 3: Library Routines

3.1.22 sll_next_node

Get a handle to the node following a given node in a list.

Synopsis

#include <linklist/linklist.h>

SLLNode sll_next_node(
SLinkList ull,
SLLNode unode

)

Parameters

SLinkList ull
the list which contains the node

SLLNode unode
the preceding node

Description

Get a handle to the node following a given node in a list.

Returns

It returns NULL if there are no more nodes, else a handle to the node.

3.1.23 sll_node_get_data

Retrieve the data from a specified linked list node.
Synopsis

#include <linklist/linklist.h>

void *sll_node_get_data(SLLNode unode) ;

Parameters

SLLNode unode
the node in question

Description

Retrieve the data from a specified linked list node.

Returns

It returns the node’s data pointer.

3.1.24 sll_node_put_data

Replace the data pointer in a given node with another.

18

Chapter 3: Library Routines 19

Synopsis
#include <linklist/linklist.h>
void sll_node_put_data(

SLLNode unode,
void *data

)
Parameters

SLLNode unode
the node in question

void *data
the new data

Description
This function allows the calling routine to change the data that a node points to. No check
is made to insure that any existing ordering of the data is maintained.
3.1.25 sll_prev
Retrieve the data in the node preceding a given node in a list.
Synopsis

#include <linklist/linklist.h>

void *sll_prev(

SLinkList ull,

SLLNode unode
)

Parameters

SLinkList ull
the list which contains the node

SLLNode unode
the following node
Description
Search a singly linked list starting at the list head and determine the node previous to the
passed node. This is a very expensive operation! Before using this, think about using a
doubly linked list!
Returns

It returns NULL if there is none, else a pointer to the previous node’s data.

Chapter 3: Library Routines

3.1.26 sll_prev_node

Get a handle to the node previous to a given node in a list.

Synopsis
#include <linklist/linklist.h>
SLLNode sll_prev_node(
SLinkList ull,

SLLNode unode
)

Parameters

SLinkList ull
the list which contains the node

SLLNode unode
the following node

Description

20

Search a singly linked list starting at the list head and determine the node previous to the
passed node. This is a very expensive operation! Before using this, think about using a

doubly linked list!

Returns

It returns NULL if there is none, else a handle to the node.

3.1.27 sll_search

Search a linked list for a node with equivalent data.

Synopsis
#include <linklist/linklist.h>

void *sll_search(
SLinkList ull,
void *data,
int (*cmp) (const void *,const void *)

)
Parameters

SLinkList ull
the list to search

void *data
the data to search for

Chapter 3: Library Routines 21

int (*cmp) (const void *,const void *)
The address of a comparison function. Set to SLL_NULL_CMP to use
the list’s initial comparison function.

Description

This searchs the list for the node for which the passed data compares equivalently with
the node’s data. It uses the passed comparison routine, if available. If not, it uses that
with which the list was initialized. If that is not available, a segmentation violation is
unavoidable. In the former case the passed data need nothave the same form as the data
stored in the node.

The comparison routine is called with the passed data as the first argument and the
node’s data as the second argument. It must return ‘-1’, ‘0’, or ‘1’ if, respectively, the first
argument is less than, equal to, or greater than the second.

Returns

It returns the node’s data pointer if the node was found, NULL otherwise.

3.1.28 sll_search_node

Search a linked list for a node with equivalent data.

Synopsis
#include <linklist/linklist.h>

SLLNode sll_search_node(
SLinkList ull,
void *data,
int (*cmp) (const void *,const void *)

)
Parameters

SLinkList ull
the list to search

void *data
the data to search for

int (*cmp) (const void *,const void *)
The address of a comparison function. Set to SLL_NULL_CMP to use
the list’s initial comparison function.

Description

This searchs the list for the node for which the passed data compares equivalently with
the node’s data. It uses the passed comparison routine, if available. If not, it uses that
with which the list was initialized. If that is not available, a segmentation violation is
unavoidable. In the former case the passed data need nothave the same form as the data
stored in the node.

Chapter 3: Library Routines 22

The comparison routine is called with the passed data as the first argument and the
node’s data as the second argument. It must return ‘-1’ ‘0’, or ‘1’ if, respectively, the first
argument is less than, equal to, or greater than the second.

Returns

It returns a handle to the matching mode, or NULL if not found.
3.1.29 sll_sizeof_node

Get the size of a node.

Synopsis

#include <linklist/linklist.h>

size_t sll_sizeof_node(void);

Description

This routine returns the size of the internal structure used for each node. This does not

include user supplied data. Please note that this is a function call, not a macro!

3.1.30 sll_tail
Get the data of the tail node of a list.

Synopsis
#include <linklist/linklist.h>

void *sll_tail(SLinkList ull);

Parameters

SLinkList ull
the list in question

Description

Get the data of the tail node of a list.

Returns

It returns the data of the tail node of a list, NULL if the list is empty.

3.1.31 sll_tail_node
Get a node handle to the tail node of a list.

Synopsis
#include <linklist/linklist.h>

SLLNode sll_tail_node(SLinkList ull);

Chapter 3: Library Routines 23

Parameters

SLinkList ull
the list in question

Description

Get a node handle to the tail node of a list.

Returns

It returns the node handle of the tail node of a list, NULL if the list is empty.

3.1.32 sll_traverse
Traverse a singly linked list, processing each node.
Synopsis
#include <linklist/linklist.h>
int sll_traverse(
SLinkList ull,
int (*action) (void *)
)3
Parameters

SLinkList ull
A handle to the list to traverse

int (*action) (void *)
The user supplied action routine to be applied to each node

Description

This routine walks along a list, calling a user supplied action function at each node. The
action routine is passed the node’s data pointer. If an invocation of the action routine
returns non-zero, the traversal is aborted and the action routine’s return value is returned.

Compare this to Section 3.1.33 [sll_traverse_d], page 23, Section 3.1.34 [sll_utraverse],
page 24, and Section 3.1.35 [sll_utraverse_d], page 25.

Returns

If the action routines all return ‘0’, it returns ‘0’, else it returns the value returned by the
last action routine called.

3.1.33 sll_traverse_d

Traverse a singly linked list, processing each node.

Synopsis
#include <linklist/linklist.h>

Chapter 3: Library Routines 24

int sll_traverse_d(
SLinkList ull,
int (*action) (void *),
void *ndata

)
Parameters

SLinkList ull
A handle to the list to traverse

int (*action) (void *)
The user supplied action routine to be applied to each node

void *ndata
a pointer to a void * variable which will recieve the data pointer of
the node which caused the traversal to be aborted. The type really
is void *x.

Description

This routine walks along a list, calling a user supplied action function at each node. The
action routine is passed the node’s data pointer. If the action routine returns non-zero, the
traversal is aborted, the current node’s data pointer is stored in the location specified by
the ndata argument, and the action routine’s return value is returned.

Compare this to Section 3.1.32 [sll_traverse], page 23, Section 3.1.34 [sll_utraverse],
page 24, and Section 3.1.35 [sll_utraverse_d|, page 25.

Returns

¢

If the action routines all return ‘0’, it returns ‘0’, else it returns the value returned by the

last action routine called.
3.1.34 sll_utraverse
Traverse a singly linked list, processing each node.
Synopsis
#include <linklist/linklist.h>
int sll_utraverse(
SLinkList ull,
int (*xaction) (void *node,void *udata),
void *udata
)
Parameters

SLinkList ull
A handle to the list to traverse

Chapter 3: Library Routines 25

int (*action) (void *node,void *udata)
The user supplied action routine applied to each node

void *udata
a pointer to data to be passed to the action routine

Description

This routine walks along a list, calling a user supplied action function at each node. The
action routine is passed the node’s data pointer as well as a pointer provided by the calling
routine, thus allowing arbitrary data to be available to the action routine. If an invocation
of the action routine returns non-zero the traversal is aborted and the action routine’s return
value is returned.

Compare this to Section 3.1.32 [sll_traverse], page 23, Section 3.1.33 [sll_traverse_d],
page 23, and Section 3.1.35 [sll_utraverse_d|, page 25.

Returns

9

If the action routines all return ‘0’, it returns ‘0’, else it returns the value returned by the

last action routine called.

3.1.35 sll_utraverse_d

Traverse a singly linked list, processing each node.

Synopsis
#include <linklist/linklist.h>

int sll_utraverse_d(
SLinkList ull,
int (*action) (void *node,void *udata),
void *udata,
void *ndata

)
Parameters

SLinkList ull
A handle to the list to traverse

int (*action) (void *node,void *udata)
The user supplied action routine applied to each node

void *udata
a pointer to data to be passed to the action routine

void *ndata
a pointer to a void * variable which will recieve the data pointer of
the node which caused the traversal to be aborted. The type really
is void *x*.

Chapter 3: Library Routines 26

Description

This routine walks along a list, calling a user supplied action function at each node. The
action routine is passed the node’s data pointer as well as a pointer provided by the calling
routine, thus allowing arbitrary data to be available to the action routine. If an invocation
of the action routine returns non-zero, the traversal is aborted, the current node’s data
pointer is stored in the location specified by the ndata argument, and the action routine’s
return value is returned.

Compare this to Section 3.1.32 [sll_traverse], page 23, Section 3.1.33 [sll_traverse_d],
page 23, and Section 3.1.34 [sll_utraverse|, page 24.

Returns

If the action routines all return ‘0’, it returns ‘0’, else it returns the value returned by the
last action routine called.

Chapter 3: Library Routines 27

3.2 Doubly Linked Lists
3.2.1 dll_count

Determine the number of nodes in a doubly linked list.

Synopsis
#include <linklist/linklist.h>

size_t dll_count(DLinkList ull);

Parameters

DLinkList ull
the list to count

Description

This function returns the number of nodes in a list. It is an inexpensive routine to call.

Returns

It returns the number of nodes in the list, ‘0’ if the passed pointer is NULL.

3.2.2 dll_delete
Delete a doubly list.
Synopsis
#include <linklist/linklist.h>
void dll_delete(
DLinkList ull,
void (*ufree) (void x*)
)
Parameters

DLinkList ull
the linked list to be deleted

void (xufree) (void *)
a function called at each link to delete user data. it may be DLL_
NULL_DELETE

Description

d11_delete traverses a linked list, calling a user-supplied function at each node in the list,
then deleting the node. Finally it deletes the list header.

3.2.3 dll_udelete
Delete a doubly list.

Chapter 3: Library Routines 28

Synopsis
#include <linklist/linklist.h>

void dll_udelete(
DLinkList ull,
void (xufree) (void *,void *),
void *udata

)
Parameters
DLinkList ull
the linked list to be deleted

void (*xufree) (void *,void *)
a function called at each link to delete user data. it may be DLL_
NULL_DELETE

void *udata
a pointer to data to be passed to the action routine

Description

dl1l_udelete traverses a linked list, calling a user-supplied function at each node in the
list, then deleting the node. Finally it deletes the list header. This routine differs from
d11_delete in that it can pass along a pointer provided by the calling routine to the action
routine, allowing arbitrary data to be available to the action routine.

3.2.4 dll_destroy
Destroy a node in a doubly linked list.

Synopsis
#include <linklist/linklist.h>

void *dll_destroy(
DLinkList ull,
void *data,
int (*cmp) (const void *,const void *)

)
Parameters
DLinkList ull
the list to search

void *data
the data to search for

int (*cmp) (const void *,const void *)
The address of a comparison function. Set to DLL_NULL_CMP to use
the list’s initial comparison function.

Chapter 3: Library Routines 29

Description

d11_destroy searches a linked list for a node which compares equivalently to the passed
data. It removes the node from the list and deallocates the memory associated with it. The
user must destroy the data referenced by the node’s data pointer.

It uses the passed comparison routine, if available. If not, it uses that with which the
list was initialized. If that is not available, a segmentation violation is unavoidable. In the
former case the passed data need not have the same form as the data stored in the node.

The comparison routine is called with the passed data as the first argument and the
node’s data as the second argument. It must return ‘-1’, ‘0’, or ‘1’ if, respectively, the first
argument is less than, equal to, or greater than the second.

Returns
It returns the node’s data pointer if the node was found, NULL otherwise.
3.2.5 dll_destroy_head
Remove the head node from a doubly linked list and destroy it.
Synopsis

#include <linklist/linklist.h>

void *dll_destroy_head(DLinkList ull);

Parameters

DLinkList ull
the list from which to remove the node

Description

This routine removes the head node from the specified list and deallocates the memory
associated with it. The user must destroy the data referenced by the node’s data pointer.

Returns
It returns the node’s data pointer. If the list is empty, it returns NULL.
3.2.6 dll_destroy_tail
Remove the tail node from a doubly linked list and destroy it.
Synopsis

#include <linklist/linklist.h>

void *dll_destroy_tail(DLinkList ull);

Parameters

DLinkList ull
the list from which to remove the node

Chapter 3: Library Routines 30

Description

This routine removes the tail node from the specified list and deallocates the memory
associated with it. The user must destroy the data referenced by the node’s data pointer.

Returns
It returns the node’s data pointer. If the list is empty, it returns NULL.
3.2.7 dll_destroy_dnode
Deallocate the memory associated with a detached node.
Synopsis
#include <linklist/linklist.h>

void dl11_destroy_dnode (DLLNode unode);

Parameters

DLLNode unode
the node to destroy

Description

This routine deallocates the memory associated with a detached node. The user must have
already destroyed the data associated with the node. The node handle must have been
returned by d11_detach_node.

3.2.8 dll_destroy_node

Remove a node from a doubly linked list and destroy it.

Synopsis
#include <linklist/linklist.h>

void *dll_destroy_node(
DLinkList ull,
DLLNode unode

)

Parameters

DLinkList ull
the list from which to remove the node

DLLNode unode
the node to remove

Description

This routine removes the passed node from the specified list and deallocates the memory
associated with it. The user must destroy the data referenced by the node’s data pointer.

Chapter 3: Library Routines 31

Returns

It returns the node’s data pointer if the node is not NULL, NULL otherwise.

3.2.9 dll_detach_head_node
Detach the head node of a list.

Synopsis
#include <linklist/linklist.h>

DLLNode dll_detach_head_node(DLinkList ull);

Parameters

DLinkList ull
the list in question

Description

This routine detaches the head node of a list from the list and returns a handle to the
detached node.

Returns

It returns a handle to the node upon success, NULL on failure.

3.2.10 dll_detach_node
Remove a node from a doubly linked list.
Synopsis
#include <linklist/linklist.h>
void dll_detach_node(

DLinkList ull,
DLLNode unode

)
Parameters

DLinkList ull
the list from which to detach the node

DLLNode unode
the node to detach

Description

This routine removes a node from a list without destroying it. The user is responsible for
its subsequent care.

Chapter 3: Library Routines

Returns

It returns a handle for the detached node.

3.2.11 dll_head
Get the data of the head node of a list.

Synopsis
#include <linklist/linklist.h>

void *dll_head(DLinkList ull);

Parameters

DLinkList ull
the list in question

Description
Get the data of the head node of a list.

Returns

It returns the data of the head node of a list, NULL if the list is empty.

3.2.12 dll_head_node
Get a node handle to the head node of a list.

Synopsis
#include <linklist/linklist.h>

DLLNode dll_head_node(DLinkList ull);

Parameters

DLinkList ull
the list in question

Description
Get a node handle to the head node of a list.

Returns

It returns the node handle of the head node of a list, NULL if the list is empty.

3.2.13 dll_insert

Create and insert a node into a doubly linked list.

32

Chapter 3: Library Routines 33

Synopsis
#include <linklist/linklist.h>
int dl11_insert(

DLinkList ull,
void *data

)
Parameters

DLinkList ull
a handle to the list into which to insert the node

void *data
a pointer to the new node’s data

Description

dll_insert creates a node, stores the passed data pointer in it, and inserts the node in the
list in the collating order determined by the comparison function with which the list was
initialized by d11_new.

Returns

It returns zero if the insert was successful, non-zero if it was unable to create the new node.

3.2.14 dll_insert_head
Create and insert a node at the head of a doubly linked list.

Synopsis
#include <linklist/linklist.h>

int dll1_insert_head(
DLinkList ull,
void *data

)
Parameters

DLinkList ull
a handle to the list into which to insert the node

void *data
a pointer to the new node’s data

Description

This routine creates a node, inserts the passed data pointer in it, and attaches the node to
the head of the list.

Chapter 3: Library Routines 34

Returns

It returns zero if the insert was successful, non-zero if it was unable to create the new node.

3.2.15 dll_insert_head_node
Insert a detached node at the head of a doubly linked list.
Synopsis
#include <linklist/linklist.h>
int dll_insert_head_node(
DLinkList ull,
DLLNode unode
)
Parameters

DLinkList ull
a handle to the list into which to insert the node

DLLNode unode
the node to insert

Description

This routine inserts a node at the head of a list. The node handle must have been obtained
from d11_detach_node.

Returns

It returns non-zero if the node is NULL, zero otherwise.

3.2.16 dll_insert_node

Insert a detached node into a list.

Synopsis
#include <linklist/linklist.h>

int dl11_insert_node(
DLinkList ull,
DLLNode unode

)

Parameters

DLinkList ull
a handle to the list into which to insert the node

DLLNode unode
the node to insert

Chapter 3: Library Routines 35

Description

This routine inserts a detached node into a list in the collating sequence determined by the
comparison function with which the list was initialized by d11_new. It assumes that the
list’s insert/delete comparison function can be applied to the data in the passed node. The
node handle must have been obtained from d11_detach_node.

Returns
It returns non-zero if the node is NULL, zero otherwise.
3.2.17 dll_insert_tail

Create and insert a node at the tail of a doubly linked list.

Synopsis
#include <linklist/linklist.h>

int dll_insert_tail(
DLinkList ull,
void *data
)
Parameters

DLinkList ull
a handle to the list into which to insert the node

void *data
a pointer to the new node’s data

Description

This routine creates a node, inserts the passed data pointer in it, and attaches the node to
the tail of the list.

Returns

It returns zero if the insert was successful, non-zero if it was unable to create the new node.

3.2.18 dll_insert_tail_node
Insert a detached node at the tail of a list.

Synopsis
#include <linklist/linklist.h>

int dll_insert_tail_node(
DLinkList ull,
DLLNode unode

)

Chapter 3: Library Routines 36

Parameters

DLinkList ull
a handle to the list into which to insert the node

DLLNode unode
the node to insert

Description

This routine inserts a node at the tail of a list. The node handle must have been obtained
from d11_detach_node.

Returns

It returns non-zero if the node is NULL, zero otherwise.

3.2.19 dll_join

Join two lists.

Synopsis
#include <linklist/linklist.h>

void d11l_join(
DLinkList dst_ull,
DLinkList src_ull
);

Parameters

DLinkList dst_ull
the destination list

DLinkList src_ull
the source list

Description

This routine moves the nodes in a list to another. If the destination list has a preferred
order (if a comparison function was specified when the list was created), the new nodes are
inserted in order. (This implies that the data in the source list have the same format as
those in the destination list.) If it has no preferred order, the source list is simply appended
to the destination list. The source list is not destroyed, it is simply emptied.

3.2.20 dll_new
Create a new doubly linked list.

Synopsis
#include <linklist/linklist.h>

DLinkList dll_new(int (*cmp) (const void *,const void *));

Chapter 3: Library Routines 37

Parameters

int (*cmp) (const void *,const void *)
a comparison function for use in searches of the linked list, may be
DLL_NULL_CMP for unordered lists

Description

This routine creates a new list structure. If the list is to have some intrinsic order, a function
defining that order should be passed. The comparison routine is called with two node data
pointers as the arguments. It must return ‘=1’, ‘0’ or ‘1’ if, respectively, the first argument
is less than, equal to, or greater than the second.

Returns

It returns a pointer to a new linked list, or NULL if it can’t allocate it.

3.2.21 dll_next
Retrieve the data in the node following a given node in a list.
Synopsis
#include <linklist/linklist.h>
void *dll_next(
DLinkList ull,
DLLNode unode
);
Parameters

DLinkList ull
the list which contains the node

DLLNode unode
the preceding node

Description

Retrieve the data in the node following a given node in a list.

Returns

It returns NULL if there are no more nodes, else a pointer to the data.

3.2.22 dll_next_node

Get a handle to the node following a given node in a list.

Synopsis
#include <linklist/linklist.h>

DLLNode dll_next_node(

Chapter 3: Library Routines

DLinkList ull,
DLLNode unode
)

Parameters

DLinkList ull
the list which contains the node

DLLNode unode
the preceding node

Description

Get a handle to the node following a given node in a list.

Returns

It returns NULL if there are no more nodes, else a handle to the node.

3.2.23 dll_node_get_data
Retrieve the data from a specified linked list node.

Synopsis
#include <linklist/linklist.h>

void *dll_node_get_data(DLLNode unode);

Parameters

DLLNode unode
the node in question

Description

Retrieve the data from a specified linked list node.

Returns

It returns the node’s data pointer.

3.2.24 dll_node_put_data

Replace the data pointer in a given node with another.

Synopsis
#include <linklist/linklist.h>

void d1l1_node_put_data(
DLLNode unode,
void *data

)

Chapter 3: Library Routines

Parameters

DLLNode unode
the node in question

void *data
the new data

Description

39

This function allows the calling routine to change the data that a node points to. No check

is made to insure that any existing ordering of the data is maintained.

3.2.25 dll_prev
Retrieve the data in the node preceding a given node in a list.
Synopsis
#include <linklist/linklist.h>
void *dll_prev(
DLinkList ull,
DLLNode unode
);
Parameters

DLinkList ull
the list which contains the node

DLLNode unode
the following node

Description

Retrieve the data in the node preceding a given node in a list.

Returns

It returns NULL if there are no more nodes, else a pointer to the data.

3.2.26 dll_prev_node

Get a handle to the node preceding a given node in a list.

Synopsis
#include <linklist/linklist.h>

DLLNode d11_prev_node(
DLinkList ull,
DLLNode unode

)3

Chapter 3: Library Routines 40

Parameters

DLinkList ull
the list which contains the node

DLLNode unode
the following node

Description

Get a handle to the node preceding a given node in a list.

Returns

It returns NULL if there are no more nodes, else a handle to the node.

3.2.27 dll_search

Search a linked list for a node with equivalent data.

Synopsis
#include <linklist/linklist.h>

void *d11l_search(
DLinkList ull,
void *data,
int (*cmp) (const void *,const void *)

)
Parameters

DLinkList ull
the list to search

void *data
the data to search for

int (*cmp) (const void *,const void *)
The address of a comparison function. Set to DLL_NULL_CMP to use
the list’s initial comparison function.

Description

This routine searchs the list for the node for which the passed data compares equivalently
with the node’s data. It uses the passed comparison routine, if available. If not, it uses
that with which the list was initialized. If that is not available, a segmentation violation is
unavoidable. In the former case the passed data need not have the same form as the data
stored in the node.

The comparison routine is called with the passed data as the first argument and the
node’s data as the second argument. It must return ‘-1’ ‘0’, or ‘1’ if, respectively, the first
argument is less than, equal to, or greater than the second.

Chapter 3: Library Routines 41

Returns
It returns the node’s data pointer if the node was found, NULL otherwise.
3.2.28 dll_search_node
Search a linked list for a node with equivalent data.
Synopsis
#include <linklist/linklist.h>

DLLNode dll_search_node(
DLinkList ull,
void *data,
int (*cmp) (const void *,const void *)

)
Parameters

DLinkList ull
the list to search

void *data
the data to search for

int (*cmp) (const void *,const void *)
The address of a comparison function. Set to DLL_NULL_CMP to use
the list’s initial comparison function.
Description

This searchs the list for the node for which the passed data compares equivalently with
the node’s data. It uses the passed comparison routine, if available. If not, it uses that
with which the list was initialized. If that is not available, a segmentation violation is
unavoidable. In the former case the passed data need nothave the same form as the data
stored in the node.

The comparison routine is called with the passed data as the first argument and the
node’s data as the second argument. It must return ‘-1’, ‘0’, or ‘1’ if, respectively, the first
argument is less than, equal to, or greater than the second.

Returns
It returns a handle to the matching mode, or NULL if not found.
3.2.29 dll_sizeof_node

Get the size of a node.

Synopsis
#include <linklist/linklist.h>

size_t dll_sizeof_node(void);

Chapter 3: Library Routines 42

Description

This routine returns the size of the internal structure used for each node. This does not
include user supplied data. Please note that this is a function call, not a macro!.

3.2.30 dll_tail
Get the data of the tail node of a list.

Synopsis

#include <linklist/linklist.h>
void *dll_tail(DLinkList ull);

Parameters

DLinkList ull
the list in question

Description

Get the data of the tail node of a list.

Returns

It returns the data of the tail node of a list, NULL if the list is empty.

3.2.31 dll_tail_node
Get a node handle to the tail node of a list.

Synopsis
#include <linklist/linklist.h>

DLLNode dll_tail_node(DLinkList ull);

Parameters

DLinkList ull
the list in question

Description

Get a node handle to the tail node of a list.

Returns

It returns the node handle of the tail node of a list, NULL if the list is empty.

3.2.32 dll_traverse

Traverse a doubly linked list either forwards or backwards, processing each node.

Chapter 3: Library Routines 43

Synopsis
#include <linklist/linklist.h>
int dl1_traverse(
DLinkList ull,
int (*action) (void *),

LinkTraverseDirection direction

);
Parameters

DLinkList ull
A handle to the list to traverse

int (*action) (void *)
The user supplied action routine applied to each node

LinkTraverseDirection direction
the direction in which to traverse the list

Possible values for a LinkTraverseDirection are as follows: HEAD_
TO_TAIL, TAIL_TO_HEAD

Description

This routine walks along a list, calling a user supplied action function at each node.The
action routine is passed the node’s data pointer. If an invocation of the action routine
returns non-zero, the traversal is aborted and the action routine’s return value is returned.

Compare this to Section 3.2.33 [dll_traverse_d], page 43, Section 3.2.34 [dll_utraverse],
page 44, and Section 3.2.35 [dll_utraverse_d], page 45.

Returns

If the action routines all return ‘0’, it returns ‘0’, else it returns the value returned by the
last action routine called.

3.2.33 dll_traverse_d

Traverse a doubly linked list either forwards or backwards, processing each node.

Synopsis
#include <linklist/linklist.h>

int dll_traverse_d(
DLinkList ull,
int (*action) (void %),
LinkTraverseDirection direction,
void *ndata

Chapter 3: Library Routines 44

Parameters

DLinkList ull
A handle to the list to traverse

int (*xaction) (void *)
The user supplied action routine applied to each node

LinkTraverseDirection direction
the direction in which to traverse the list

Possible values for a LinkTraverseDirection are as follows: HEAD_
TO_TATIL, TAIL_TO_HEAD

void *ndata
a pointer to a void * variable which will recieve the data pointer of
the node which caused the traversal to be aborted. The type really
is void *x.

Description

This routine walks along a list, calling a user supplied action function at each node.The
action routine is passed the node’s data pointer. If an invocation of the action routine
returns non-zero, the traversal is aborted, the current node’s data pointer is stored in the
location specified by the ndata argument, and the action routine’s return value is returned.

Compare this to Section 3.2.32 [dll_traverse|, page 42, Section 3.2.34 [dll_utraverse],
page 44, and Section 3.2.35 [dll_utraverse_d], page 45.
Returns
If the action routines all return ‘0’, it returns ‘0’, else it returns the value returned by the

last action routine called.

3.2.34 dll_utraverse

Traverse a doubly linked list either forwards or backwards, processing each node.

Synopsis
#include <linklist/linklist.h>

int dl1l_utraverse(
DLinkList ull,
int (*action) (void *node,void *udata),
void *udata,
LinkTraverseDirection direction

)
Parameters

DLinkList ull
A handle to the list to traverse

Chapter 3: Library Routines 45

int (*action) (void *node,void *udata)
The user supplied action routine applied to each node

void *udata
a pointer to data to be passed to the action routine

LinkTraverseDirection direction
the direction in which to traverse the list

Possible values for a LinkTraverseDirection are as follows: HEAD_
TO_TAIL, TAIL_TO_HEAD

Description

This routine walks along a list, calling a user supplied action function at each node. The
action routine is passed the node’s data pointer as well as a pointer provided by the calling
routine, thus allowing arbitrary data to be available to the action routine. If an invocation
of the action routine returns non-zero the traversal is aborted and the action routine’s return
value is returned.

Compare this to Section 3.2.32 [dll_traverse], page 42, Section 3.2.33 [dll_traverse_d],
page 43, and Section 3.2.35 [dll_utraverse_d], page 45.

Returns

9

If the action routines all return ‘0’, it returns ‘0’ else it returns the value returned by the

last action routine called.

3.2.35 dll_utraverse_d

Traverse a doubly linked list either forwards or backwards, processing each node.

Synopsis
#include <linklist/linklist.h>

int dll_utraverse_d(
DLinkList ull,
int (*action) (void *node,void *udata),
void *udata,
LinkTraverseDirection direction,
void *ndata

)
Parameters

DLinkList ull
A handle to the list to traverse

int (*action) (void *node,void *udata)
The user supplied action routine applied to each node

void *udata
a pointer to data to be passed to the action routine

Chapter 3: Library Routines 46

LinkTraverseDirection direction
the direction in which to traverse the list

Possible values for a LinkTraverseDirection are as follows: HEAD_
TO_TAIL, TAIL_TO_HEAD

void *ndata
a pointer to a void * variable which will recieve the data pointer of
the node which caused the traversal to be aborted. The type really
is void *x*.

Description

This routine walks along a list, calling a user supplied action function at each node. The
action routine is passed the node’s data pointer as well as a pointer provided by the calling
routine, thus allowing arbitrary data to be available to the action routine. If an invocation
of the action routine returns non-zero, the traversal is aborted, the current node’s data
pointer is stored in the location specified by the ndata argument, and the action routine’s
return value is returned.

Compare this to Section 3.2.32 [dll_traverse], page 42, Section 3.2.33 [dll_traverse_d],
page 43, and Section 3.2.34 [dll_utraverse|, page 44.

Returns

If the action routines all return ‘0’°, it returns ‘0’, else it returns the value returned by the
last action routine called.

	Copying
	Usage
	Overview
	Data Encapsulation
	Node Comparison

	Library Routines
	Singly Linked Lists
	sll_count
	sll_delete
	sll_udelete
	sll_destroy
	sll_destroy_head
	sll_destroy_tail
	sll_destroy_dnode
	sll_destroy_node
	sll_detach_head_node
	sll_detach_node
	sll_head
	sll_head_node
	sll_insert
	sll_insert_head
	sll_insert_head_node
	sll_insert_node
	sll_insert_tail
	sll_insert_tail_node
	sll_join
	sll_new
	sll_next
	sll_next_node
	sll_node_get_data
	sll_node_put_data
	sll_prev
	sll_prev_node
	sll_search
	sll_search_node
	sll_sizeof_node
	sll_tail
	sll_tail_node
	sll_traverse
	sll_traverse_d
	sll_utraverse
	sll_utraverse_d

	Doubly Linked Lists
	dll_count
	dll_delete
	dll_udelete
	dll_destroy
	dll_destroy_head
	dll_destroy_tail
	dll_destroy_dnode
	dll_destroy_node
	dll_detach_head_node
	dll_detach_node
	dll_head
	dll_head_node
	dll_insert
	dll_insert_head
	dll_insert_head_node
	dll_insert_node
	dll_insert_tail
	dll_insert_tail_node
	dll_join
	dll_new
	dll_next
	dll_next_node
	dll_node_get_data
	dll_node_put_data
	dll_prev
	dll_prev_node
	dll_search
	dll_search_node
	dll_sizeof_node
	dll_tail
	dll_tail_node
	dll_traverse
	dll_traverse_d
	dll_utraverse
	dll_utraverse_d

