
BsplineEval
A C-library to evaluate a spline from its B-spline representation.

edition 1.1.4 for BsplineEval version 1.1.4
25 January 2010

Dan Nguyen

Copyright c© 2006 Smithsonian Institution

BsplineEval is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

BsplineEval is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA

i

Table of Contents

1 Copying . 1

2 Introduction . 3

3 Example . 5
3.1 A sample C program . 5

4 Library Routines . 9
4.1 BsplineAlgo a . 9
4.2 BsplineAlgo b . 10
4.3 BsplineAlgo c . 11
4.4 BsplineAlgo c derivs . 12
4.5 Bspline determine index . 14
4.6 Bspline err msg . 15
4.7 Bspline eval . 16
4.8 Bspline eval derivs . 17
4.9 Bspline free . 18
4.10 Bspline init . 19

5 A Timing Comparison of BsplineEval library vs
DASL . 21

6 Testing the BsplineEval library vs DASL 23

7 Known Problems and Improvements to be
made . 27

Chapter 1: Copying 1

1 Copying

The software described by this manual is copyright c© 2006 Smithsonian Institution. All
rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your Goption) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Chapter 2: Introduction 3

2 Introduction

BsplineEval This library implements the algorithms to evaluate a spline from its B-spline
representation as described in the paper:

The Numerical Evaluation of a Spline from its B-Spline Representation by M. G. Cox.
J. Inst. Maths. Applics (1978) 21, 135-143.

The Algorithm A, Algorithm B and Algorithm C as described in said paper are im-
plemented. Moreover, the algorithm C with its associated derivatives and an optimized
version of algorithm C with its derivatives are provided.

The functions Bspline_Algo_a and Bspline_Algo_b are the one dimensional spline
evaluation from its B-spline representation using algorithm A and B, respectively.

The evaluation of s(theta, z), where theta is periodic, from its normalized B-spline rep-
resentation are implemented in the functions: Bspline_Algo_c, Bspline_Algo_c_derivs,
Bspline_eval and Bspline_eval_derivs.

The functions Bspline_Algo_c and Bspline_Algo_c_derivs allow the user to set the
underlying algorithms used (algorithm ’a’ or ’b’). Bspline_eval and Bspline_eval_
derivs are the optimized versions of Bspline_Algo_c and Bspline_Algo_c_derivs, re-
spectively.

Functions with a derivs suffix also evaluates the derivatives with respect to theta and
z. The results of the B-spline evaluation and its derivatives are stored in the structure:

typedef struct {

double s /* s(theta, z) */;
double dsdz /* ds(theta, z) / dz */;
double dsdt /* ds(theta, t) */;

} BsplineResult;

Chapter 3: Example 5

3 Example

3.1 A sample C program

#include <stdio.h>
#include <stdlib.h>

#include <bsplineval.h>
#include <spline_coef.h>

/*
This program illustrates the sequences of calls to make to evaluate a
spline.

*/

int use_selected_Bspline_evaluator(BsplineInput* bspline_input) {

double tt = 3.14, zz = 0.0;
BsplineResult result;

/* Algorithm B then Algorithm A will be used in the call to Algorithm C */
bspline_input->method1 = ’b’;
bspline_input->method2 = ’a’;

if (Bspline_Success !=
BsplineAlgo_c_derivs(tt, zz, bspline_input, &result)) {

fprintf(stderr,
"BsplineAlgo_c_derivs returned with an error t=%.14f, "
"z=%.14f\n", tt, zz);

return EXIT_FAILURE;
}

return EXIT_SUCCESS;

}

/* This is the recommended used of the call to the library */
int use_optimized_Bspline(BsplineInput* bspline_input) {

double tt = 3.14, zz = 0.0;
BsplineResult result;

if (Bspline_Success !=
Bspline_eval_derivs(tt, zz, bspline_input, &result)) {

fprintf(stderr,
"Bspline_eval_derivs returned with an error t=%.14f, "

Chapter 3: Example 6

"z=%.14f\n", tt, zz);
return EXIT_FAILURE;

}

return EXIT_SUCCESS;

}

int main(int argc, char** argv) {

/* Common c; */
BsplineInput* bspline_input = NULL;

/*
* The user is responsible for supplying the information necessary to
* evaluate the B-spline: the knots in theta and z, the order of knots etc..
* This structure must be filled in by the user before making any more calls
* to the library.
*/
spline_coef scoef;

/*
* It is the user’s responsibilty to read in the Bspline coefficients.
* read_spline_data_(c->input, &input_unit, &c->rms_amplitude);
*/

/* Allocate the memory used by the library */
bspline_input = (BsplineInput*) Bspline_init(&scoef);
if (NULL == bspline_input) {
fprintf(stderr,
"process() : Unable to allocate memory for eval_spline\n");

return EXIT_FAILURE;
}

/* This is the recommended used of the call to the library */
if (EXIT_FAILURE == use_optimized_Bspline(bspline_input)) {
Bspline_free(bspline_input);
return EXIT_FAILURE;

}

/* If the user insists on using one of the slow routines */
if (EXIT_FAILURE == use_selected_Bspline_evaluator(bspline_input)) {
Bspline_free(bspline_input);
return EXIT_FAILURE;

}

/* Must free memory which was allocated in the call to Bspline_init */

Chapter 3: Example 7

Bspline_free(bspline_input);

return EXIT_SUCCESS;

}

Chapter 4: Library Routines 9

4 Library Routines

4.1 BsplineAlgo a

BsplineAlgo a – The evaluation of s(x) from its normalized B-spline representation using
Scheme A (repeated convex combinations).

Synopsis

#include <BsplineEval/bsplineval.h>
#include <BsplineEval/spline_coef.h>

BsplineErr BsplineAlgo_a(
double x,
size_t j_index,
size_t order,
double *c,
double *d,
double *knot,
double *result

);

Parameters

double x The point to evaluate the B-spline at

size_t j_index
knot[j index-1] <= x < knot[j index], j

size_t order
the order of the B-spline, n

double *c the B-spline coefficients, subscripted c

double *d work space of dim : number of knots + order

double *knot
the B-spline knots, subscripted x

double *result
s(x)

Description

The Numerical Evaluation of a Spline from its B-Spline Representation by M. G. Cox. J.
Inst. Maths. Applics (1978) 21, 135-143.

Chapter 4: Library Routines 10

Returns

The enum BsplineErr.

Possible values for a BsplineErr are as follows:

Bspline_Success
Success

Bspline_OutOfRange
One of the arguments is out of range

Bspline_OutOfRangeT
The theta value is not within the limits of the t knots

Bspline_OutOfRangeZ
The z value is outside the limits of the z knots

Bspline_WrongMethod1
The method request must be one of : a, A, b or B

Bspline_WrongMethod2
The method request must be one of : a, A, b or B

4.2 BsplineAlgo b

BsplineAlgo b: The evaluation of s(x) from its normalized B-spline representation using
Scheme B (computation of the basis).

Synopsis

#include <BsplineEval/bsplineval.h>
#include <BsplineEval/spline_coef.h>

BsplineErr BsplineAlgo_b(
double x,
size_t j_index,
size_t order,
double *c,
double *v,
double *knot,
double *result

);

Parameters

double x The point to evaluate the B-spline at

size_t j_index
knot[j index-1] <= x < knot[j index], j

Chapter 4: Library Routines 11

size_t order
the order of the B-spline, n

double *c the B-spline coefficients, subscripted c

double *v work space of dimension : number order + 1

double *knot
the B-spline knots, subscripted x

double *result
s(x)

Description

The Numerical Evaluation of a Spline from its B-Spline Representation by M. G. Cox. J.
Inst. Maths. Applics (1978) 21, 135-143.

Returns

The enum BsplineErr.

Possible values for a BsplineErr are as follows:

Bspline_Success
Success

Bspline_OutOfRange
One of the arguments is out of range

Bspline_OutOfRangeT
The theta value is not within the limits of the t knots

Bspline_OutOfRangeZ
The z value is outside the limits of the z knots

Bspline_WrongMethod1
The method request must be one of : a, A, b or B

Bspline_WrongMethod2
The method request must be one of : a, A, b or B

4.3 BsplineAlgo c

BsplineAlgo c: The evaluation of s(t,z) from its normalized B-spline representation. This
function allows the user to select the underlying algorithm used, ’a’ or ’b’.

Synopsis

#include <BsplineEval/bsplineval.h>
#include <BsplineEval/spline_coef.h>

BsplineErr BsplineAlgo_c(

Chapter 4: Library Routines 12

double theta,
double z,
BsplineInput *bspline_input,
double *result

);

Parameters

double theta
The value of theta to evaluate the B-spline

double z The value of z to evaluate the B-spline

BsplineInput *bspline_input
All neccessary B-spline input

double *result
s(theta, z)

Description

The Numerical Evaluation of a Spline from its B-Spline Representation by M. G. Cox. J.
Inst. Maths. Applics (1978) 21, 135-143.

Returns

The enum BsplineErr. SEE ALSO Bspline eval

Possible values for a BsplineErr are as follows:

Bspline_Success
Success

Bspline_OutOfRange
One of the arguments is out of range

Bspline_OutOfRangeT
The theta value is not within the limits of the t knots

Bspline_OutOfRangeZ
The z value is outside the limits of the z knots

Bspline_WrongMethod1
The method request must be one of : a, A, b or B

Bspline_WrongMethod2
The method request must be one of : a, A, b or B

4.4 BsplineAlgo c derivs

BsplineAlgo c derivs – The evaluation of s(t,z) and the derivative with respect to t and
z from its normalized B-spline representation. This function allows the user to select the
underlying algorithm used, ’a’ or ’b’.

Chapter 4: Library Routines 13

Synopsis

#include <BsplineEval/bsplineval.h>
#include <BsplineEval/spline_coef.h>

BsplineErr BsplineAlgo_c_derivs(
double theta,
double z,
BsplineInput *bspline_input,
BsplineResult *bspline_result

);

Parameters

double theta
The theta to evaluate the B-spline

double z The value of z to evaluate the B-spline

BsplineInput *bspline_input
All B-spline input

BsplineResult *bspline_result
All B-spline output

Description

The Numerical Evaluation of a Spline from its B-Spline Representation by M. G. Cox. J.
Inst. Maths. Applics (1978) 21, 135-143.

Returns

The enum BsplineErr.

Possible values for a BsplineErr are as follows:

Bspline_Success
Success

Bspline_OutOfRange
One of the arguments is out of range

Bspline_OutOfRangeT
The theta value is not within the limits of the t knots

Bspline_OutOfRangeZ
The z value is outside the limits of the z knots

Bspline_WrongMethod1
The method request must be one of : a, A, b or B

Bspline_WrongMethod2
The method request must be one of : a, A, b or B

Chapter 4: Library Routines 14

4.5 Bspline determine index

1] <= key < base[index]. If key == base[num - 1] then index is set to num - 1.

Synopsis

#include <BsplineEval/bsplineval.h>
#include <BsplineEval/spline_coef.h>

BsplineErr Bspline_determine_index(
double *key,
void *base,
size_t num,
double minval,
double maxval,
size_t *index

);

Parameters

double *key
The key to search for

void *base
Points to the element at the base of array

size_t num
Number of elements in the array

double minval
The left most knot boundary

double maxval
The right most knot boundary

size_t *index
base[index - 1] <= key < base[index]

Description

Do a Binary search to find the location of the key within the knots. If this routine is usually
called iteratively between the ideal surface and the deformation map then it can improve a
bit by making use of the last position found.

Returns

The enum BsplineErr.

Possible values for a BsplineErr are as follows:

Chapter 4: Library Routines 15

Bspline_Success
Success

Bspline_OutOfRange
One of the arguments is out of range

Bspline_OutOfRangeT
The theta value is not within the limits of the t knots

Bspline_OutOfRangeZ
The z value is outside the limits of the z knots

Bspline_WrongMethod1
The method request must be one of : a, A, b or B

Bspline_WrongMethod2
The method request must be one of : a, A, b or B

4.6 Bspline err msg

Bspline err msg – print the error message to the file pointer.

Synopsis

#include <BsplineEval/bsplineval.h>
#include <BsplineEval/spline_coef.h>

void Bspline_err_msg(
BsplineErr err,
FILE *fp

);

Parameters

BsplineErr err
Possible values for a BsplineErr are as follows:

Bspline_Success
Success

Bspline_OutOfRange
One of the arguments is out of range

Bspline_OutOfRangeT
The theta value is not within the limits of
the t knots

Bspline_OutOfRangeZ
The z value is outside the limits of the
z knots

Bspline_WrongMethod1
The method request must be one of : a, A,
b or B

Chapter 4: Library Routines 16

Bspline_WrongMethod2
The method request must be one of : a, A,
b or B

FILE *fp Not Documented.

Description

Bspline err msg – print the error message to the file pointer.

Returns

void.

4.7 Bspline eval

Bspline eval: The evaluation of s(t,z) from its normalized B-spline representation. This
function is similar to the function BsplineAlgo c with the exception that the underlying
algorithms ’b’ and ’b’ are chosen for the user.

Synopsis

#include <BsplineEval/bsplineval.h>
#include <BsplineEval/spline_coef.h>

BsplineErr Bspline_eval(
double theta,
double z,
BsplineInput *bspline_input,
double *result

);

Parameters

double theta
The value of theta to evaluate the B-spline

double z The value of z to evaluate the B-spline

BsplineInput *bspline_input
All neccessary B-spline input

double *result
s(theta, z)

Description

The Numerical Evaluation of a Spline from its B-Spline Representation by M. G. Cox. J.
Inst. Maths. Applics (1978) 21, 135-143.

Chapter 4: Library Routines 17

Returns

The enum BsplineErr.

Possible values for a BsplineErr are as follows:

Bspline_Success
Success

Bspline_OutOfRange
One of the arguments is out of range

Bspline_OutOfRangeT
The theta value is not within the limits of the t knots

Bspline_OutOfRangeZ
The z value is outside the limits of the z knots

Bspline_WrongMethod1
The method request must be one of : a, A, b or B

Bspline_WrongMethod2
The method request must be one of : a, A, b or B

4.8 Bspline eval derivs

Bspline eval derivs – The evaluation of s(t,z) and the derivative with respect to t and z
from its normalized B-spline representation. This function is an optimized version of the
function BsplineAlgo c derivs.

Synopsis

#include <BsplineEval/bsplineval.h>
#include <BsplineEval/spline_coef.h>

BsplineErr Bspline_eval_derivs(
double theta,
double z,
BsplineInput *bspline_input,
BsplineResult *bspline_result

);

Parameters

double theta
The theta to evaluate the B-spline

double z The value of z to evaluate the B-spline

BsplineInput *bspline_input
All B-spline input

Chapter 4: Library Routines 18

BsplineResult *bspline_result
All B-spline output

Description

An optimized implementation of the function BsplineAlgo c. This function can be further
optimized by folding in the last of the seperate call to BsplineAlgo b, but this requires the
rewriting of the algo b routine. The Numerical Evaluation of a Spline from its B-Spline
Representation by M. G. Cox. J. Inst. Maths. Applics (1978) 21, 135-143.

Returns

The enum BsplineErr.

Possible values for a BsplineErr are as follows:

Bspline_Success
Success

Bspline_OutOfRange
One of the arguments is out of range

Bspline_OutOfRangeT
The theta value is not within the limits of the t knots

Bspline_OutOfRangeZ
The z value is outside the limits of the z knots

Bspline_WrongMethod1
The method request must be one of : a, A, b or B

Bspline_WrongMethod2
The method request must be one of : a, A, b or B

4.9 Bspline free

Bspline free – free memory allocated by Bspline init.

Synopsis

#include <BsplineEval/bsplineval.h>
#include <BsplineEval/spline_coef.h>

void Bspline_free(BsplineInput *input);

Parameters

BsplineInput *input
Not Documented.

Chapter 4: Library Routines 19

Description

Bspline free – free memory allocated by Bspline init.

Returns

void.

4.10 Bspline init

Allocates the memory used for Bspline library.

Synopsis

#include <BsplineEval/bsplineval.h>
#include <BsplineEval/spline_coef.h>

BsplineInput *Bspline_init(spline_coef *scoef);

Parameters

spline_coef *scoef
Not Documented.

Description

Allocates the memory used for Bspline library.

Returns

BsplineInput* if successful else NULL is returned.

Chapter 5: A Timing Comparison of BsplineEval library vs DASL 21

5 A Timing Comparison of BsplineEval library vs
DASL

The file ./test/p6.spl with the following characteristics:

spline deformation amplitudes
z_order 4
theta_order 4
qz 421
num_z_knots 417
num_theta_knots 144
zmin zmax -1.000000e+00 1.000000e+00
tmin tmax 0.000000e+00 6.283185e+00
rms amplitude 129188.64688685712463
#

will be used to derive the following timing results for evaluating the spline without eval-
uating the derivatives and then with derivatives. The actual time one may get is dependent
on many factors such as the number of theta and z knots etc...

| 6 | 6 | 6
| 10 | 4 * 10 | 9 * 10

___________|______________|______________|______________
| | |

ab | 35.7 | 1:58.9 | 4:17.5
ba | 33.6 | 1:50.7 | 3:59.0
aa | 36.2 | 2:01.4 | 4:23.2
bb | 32.9 | 1:48.2 | 3:53.3
optimized | 33.2 | 1:48.9 | 3:55.5
dasl | 59.8 | 3:35.5 | 7:54.3

Note that the time for the optimized version (without evaluating the derivatives) is
slightly more then the time for the ’bb’ version. The reason for this is the routine Bspline_
eval was provided as a symmetry to the function Bspline_eval_derivs. The routine
Bspline_eval sets to flag, method1=’b’; and method2=’b’; before calling routine ’bb’ so a
slightly slower time is expected.

| 6 | 6 | 6
| 10 | 4 * 10 | 9 * 10

___________|______________|______________|______________
| | |

ab | 1:09.8 | 4:15.6 | 9:24.8
ba | 1:04.5 | 3:54.5 | 8:37.9
aa | 1:11.4 | 4:21.9 | 9:39.4
bb | 1:02.8 | 3:47.7 | 8:22.7

Chapter 5: A Timing Comparison of BsplineEval library vs DASL 22

optimized | 45.5 | 2:38.1 | 5:45.6
dasl | 2:38.2 | 10:09.0 | 22:40.0

The script ./test/timeit.ksh was used to generate the entries to this table.

The time gain in the dasl routine versus the optimized Algorithm C is dependent on
several factors. The order of the spline and then number of knots in theta and z.

Chapter 6: Testing the BsplineEval library vs DASL 23

6 Testing the BsplineEval library vs DASL

Testing was performed by comparing the results given by the dasl and the optimized algo-
rithm C. The paragraphs to follow show the results of two different input files, one with
‘large’ rms deformation (p6.spl) and one with ‘small’ rms deformation (p6 low 31 72.SPL
). The results agree to within roundoff errors, this was done by running the following com-
mand:

The file ./test/p6.spl with the following characteristics:

spline deformation amplitudes
z_order 4
theta_order 4
qz 421
num_z_knots 417
num_theta_knots 144
zmin zmax -1.000000e+00 1.000000e+00
tmin tmax 0.000000e+00 6.283185e+00
rms amplitude 129188.64688685712463
#

yield the following results:

futile-90: objs/sun4u-SunOS-5/evalbspline num=100 test=5 \
| column -v -a deltas N - | column -v -a deltadt N \
| column -v -a deltadz N \

| compute deltas = \(dasl - algoc \) \/ dasl \
| compute deltadz = \(ddasldz - dalgocdz \) \/ ddasldz \
| compute deltadt = \(ddasldt - dalgocdt \) \/ ddasldt \
| rdbstats deltas deltadz deltadt | tbl2lst

deltas_n | N
deltas_sum | N
deltas_ave | N
deltas_dev | N
deltas_min | N
deltas_max | N
deltadz_n | N

deltadz_sum | N
deltadz_ave | N
deltadz_dev | N
deltadz_min | N
deltadz_max | N
deltadt_n | N

deltadt_sum | N
deltadt_ave | N
deltadt_dev | N

Chapter 6: Testing the BsplineEval library vs DASL 24

deltadt_min | N
deltadt_max | N

deltas_n | 10000
deltas_sum | -1.29628283548978e-13
deltas_ave | -1.29628283548978e-17
deltas_dev | 1.10245039134638e-16
deltas_min | -5.83761910253855e-16
deltas_max | 5.3919301269975e-16
deltadz_n | 10000

deltadz_sum | -9.28799965664604e-14
deltadz_ave | -9.28799965664602e-18
deltadz_dev | 1.33699222283282e-16
deltadz_min | -3.90195209692813e-15
deltadz_max | 3.74917737998133e-15
deltadt_n | 10000

deltadt_sum | -1.46179231627943e-13
deltadt_ave | -1.46179231627943e-17
deltadt_dev | 1.07162272062163e-16
deltadt_min | -6.82814047720486e-16
deltadt_max | 7.42207044201643e-16

The file ./test/p6_low_31_72.SPL with the following characteristics:

spline deformation amplitudes
z_order 4
theta_order 4
qz 33
num_z_knots 29
num_theta_knots 71
zmin zmax -1.000000e+00 1.000000e+00
tmin tmax 0.000000e+00 6.283185e+00
rms amplitude 0.00101284258284

yield the following results:

futile-93: objs/sun4u-SunOS-5/evalbspline num=100 test=5 \
input=p6_low_31_72.SPL \
| column -v -a deltas N - | column -v -a deltadt N \
| column -v -a deltadz N \

| compute deltas = \(dasl - algoc \) \/ dasl \
| compute deltadz = \(ddasldz - dalgocdz \) \/ ddasldz \
| compute deltadt = \(ddasldt - dalgocdt \) \/ ddasldt \
| rdbstats deltas deltadz deltadt | tbl2lst

Chapter 6: Testing the BsplineEval library vs DASL 25

deltas_n | N
deltas_sum | N
deltas_ave | N
deltas_dev | N
deltas_min | N
deltas_max | N
deltadz_n | N

deltadz_sum | N
deltadz_ave | N
deltadz_dev | N
deltadz_min | N
deltadz_max | N
deltadt_n | N

deltadt_sum | N
deltadt_ave | N
deltadt_dev | N
deltadt_min | N
deltadt_max | N

deltas_n | 10000
deltas_sum | -0
deltas_ave | 0
deltas_dev | 0
deltas_min | -0
deltas_max | -0
deltadz_n | 10000

deltadz_sum | 0
deltadz_ave | 0
deltadz_dev | 0
deltadz_min | 0
deltadz_max | 0
deltadt_n | 10000

deltadt_sum | 0
deltadt_ave | 0
deltadt_dev | 0
deltadt_min | -0
deltadt_max | -0

Chapter 7: Known Problems and Improvements to be made 27

7 Known Problems and Improvements to be made

In evaluating s(theta, z) from its normalized representation, the library currently assumes
theta to be periodic. The library can ‘easily’ be made to be more general, ie the library can
should allow the user to specify the which variable is periodic or none at all.

The routine eval Bspline derivs is an optimized version of the routine BsplineAlgo c.
This was done by folding one of the calls to calculate the derivative into the call to evaluate
s(theta, z). It will require a little work to fold in the other derivative. A 10-15% savings
is expected.

The library currently needs three arrays of B-spline coefficients (scoef->c, scoef->cdifz,
scoef->cdift), a more optimized data structure would be to pass the library an array of
structures. Theoretically, this will minimize caching in results since only n number (where
n is the order of the B-spline) of elements are needed to evaluate the spline.

	Copying
	Introduction
	Example
	A sample C program

	Library Routines
	BsplineAlgo_a
	BsplineAlgo_b
	BsplineAlgo_c
	BsplineAlgo_c_derivs
	Bspline_determine_index
	Bspline_err_msg
	Bspline_eval
	Bspline_eval_derivs
	Bspline_free
	Bspline_init

	A Timing Comparison of BsplineEval library vs DASL
	Testing the BsplineEval library vs DASL
	Known Problems and Improvements to be made

