rbtree

a red-black balanced binary tree package
edition 1.0.9 for rbtree version 1.0.9
11 September 2009

Diab Jerius

Copyright (©) 2006 Smithsonian Institution

rbtree is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

rbtree is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA

Table of Contents

1 Copying . ..ot 1
2 Usage.......coiii 3
2.1 OVEIVIEW ..ot 3
2.2 Data Encapsulation 4
2.3 Node CompariSOmnvuttt et 4
3 Library Routines................................ 7
3.1 Public Routines........ ... o 7
3.1.1 rbtree_bnd_search 7
3.1.2 rbtree_bnd_search_-node 8
3.1.3 rbtree_count........ ... 9
3.1.4 rbtree_delete 9
3.1.5 rbtree_udelete....... 10
3.1.6 rbtree_destroy 11
3.1.7 rbtree_destroy_dnode........... i 12
3.1.8 rbtree_destroy_node............ i 12
3.1.9 rbtree_detach_node........... 13
3.1.10 rbtree_inSert ... 13
3.1.11 rbtree_insert_dnode 14
3.1.12 rhtree_join 14
3.1.13 rbhtree_max.o 15
3.1.14 rbtreecmax_node............ 15
3.1.15 rbtree_min...... ... 16
3.1.16 rbtree_min_node 16
3.1.17 rbtree_new 17
3.1.18 rbtree_node_size........ 17
3.1.19 rbtree_next_node......... 17
3.1.20 rbtree.node_cmp_S.........iiiiiii e 18
3.1.21 rbtree_node_Cmp_v.........c.oiiiiiii i 19
3.1.22 rbtree_node_get_data.............. ... i 19
3.1.23 rbtree_node_put_data 19
3.1.24 rbtree_search......... 20
3.1.25 rbtree_search_node......... 21
3.1.26 rbtree_traverse i 22
3.1.27 rbtree_utraverse. 22
3.1.28 rbtree_walk 23
3.1.29 rbtree_uwalk 24
3.2 Private Routines 25
3.2.1 BndSearch 25
3.2.2 Delete ..o 26
3.2.3 Free_in_order........ 27

3.24
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.2.10
3.2.11
3.2.12
3.2.13
3.2.14
3.2.15
3.2.16
3.2.17
3.2.18
3.2.19
3.2.20
3.2.21

uFree_in_order 27
uFree_post_order....... 28
Free_post_order 29
Insert ... oo 30
JoinTrees 30
LeftRotate . ..o 31
MaximUIN . ..o ot e 31
MiInImum . ..o e 32
Predecessor ... 32
RightRotate ... i 32
Search ... 33
SUCCESSOT « o vttt ettt e e e e e 34
TTaAVEISE . oottt e 34
UTaverSe . .ot 35
Walk. .o 36
UWalK .o 37
deleteNode.o 38
NEWNOAC. . .ot 38

ii

Chapter 1: Copying 1

1 Copying

The software described by this manual is copyright (©) 2006 Smithsonian Institution. All
rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Chapter 2: Usage 3

2 Usage

rbtree is a package of routines which implement a red-black balanced binary tree. The al-
gorithms are for the most part taken from the book Introduction to Algorithms, by Thomas
H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.

Functions supported by this package include searches; tree traversals in either direction
with actions performed at selectable traversals of each node; joining of trees; detachment
of nodes; and finding data extrema.

2.1 Overview

This package provides two, parallel, interfaces to a tree. The first, preferred, method, is to
return results from searches, etc. as node data rather than as references to nodes. This
helps shield the user from the vagaries of the tree implementation, and, in most cases, is
really what the user wants.

The second method deals directly with node handles. This is generally more efficient,
but requires more care by the user. It also permits more specialized manipulations, such
as moving nodes between trees without the need to create and destroy nodes. The routines
which work with node handles generally have the string ‘node’ in their names.

Trees are constructed with rbtree_new and are destroyed with rbtree_delete. rbtree_
new is passed a comparison routine which determines how the tree will be ordered.

Nodes are created and inserted into trees with rbtree_insert. They can be removed
from trees either by completely destroying them, via rbtree_destroy or rbtree_destroy_
node, or by detaching them from the tree via rbtree_detach_node. The latter is useful if
a node is to be moved from one tree to another. Detached nodes are themeselves destroyed
with rbtree_destroy_dnode.

A tree is searched with rbtree_search, rbtree_bnd_search, rbtree_search_node, or
rbtree_bnd_search_node. The first two return pointers to user data, the last two pointers
to the node. The rbtree_bnd_search routines return the node or data upon success, or
the nodes which bracket the data upon failure.

The minimum and maximum data can be also be determined: rbtree_min; rbtree_max;
rbtree_min_node; and rbtree_max_node. The latter two return handles to the appropriate
node.

Tree traversals are available in two flavors. The tree can be traversed and an action
performed at the in-order traversals of nodes (rbtree_traverse or rbtree_utraverse)
or at any combination of traversals (pre-order, in-order, or post-order) (rbtree_walk or
rbtree_uwalk). In either case, the tree may be traversed in either ascending or descending
order (in this package denoted as LEFT_TO_RIGHT or RIGHT_TO_LEFT).

Once a specific node has been identfied via rbtree_min_node, rbtree_max_node or
rbtree_search_node, various manipulations are possible. It can be detached from the tree
(rbtree_detach_node); you can find its predecessor or successor nodes (rbtree_next_
node); its data can be retrieved and modified (rbtree_node_get_data; and rbtree_node_
put_data); and you can delete it (rbtree_destroy_node);.

Chapter 2: Usage 4

The number of nodes in a tree is available via rbtree_count.

Finally, two trees can be joined with rbtree_join.

2.2 Data Encapsulation

Each node contains a data pointer which associates a separate user-supplied data structure
with the node. The pointer is stored at node creation, and is passed back after searches,
etc. Nodes do not contain any user data. The user is responsible for deallocating any data
when individual nodes are destroyed. When deleting entire trees via rbtree_delete, a user
supplied routine will be invoked on each node’s data pointer, if requested.

2.3 Node Comparison

There are two situations in which nodes will be compared, either to other nodes or to key
data. During node insertion, the inserted node’s data is compared against other nodes’ data
to determine the proper ordering of the nodes. This operation uses the comparison routine
passed to rbtree_new when the tree is created. The second situation is during searches of
the tree, where node data is compared to some user specified data. Since the comparison
routine passed to rbtree_new assumes the same form for both pieces of data passed to it for
comparison, using it would require that the user create a dummy user node data structure
(the same as the one associated with each node), and fill it with the key data, which in
most instances will probably be one field. rbtree provides the possibility of using another
comparison routine (passed to the search or destroy routines), which may compare data
with two dissimilar forms. For example, assume that the user node data has the following
structure, and keys on the ‘id’ value:

typedef struct
{

int id;

char *name;
} UserNodeData;

The node comparison routine, used to compare nodes during insertion, would look like this:

int node_node_compare(const void *dpl, const void *dp2)

{
return ((UserNodeData *)dpl)->id - ((UserNodeData *)dp2)->id;
}

If you want to search the resultant tree, and not create a dummy UserNodeData structure,
construct the search/destroy comparison routine as follows:

int key_node_compare(const void *dpl, const void *dp2)
{

return *((int *) dpl) - ((UserNodeData *)dp2)->id;
+

and pass the search/destroy routine a pointer to an int set equal to the id for which you're
searching.

Chapter 2: Usage 5

Several predefined comparison routines are available, but are of limited use. See
Section 3.1.20 [rbtree_node_cmp_s], page 18. See Section 3.1.21 [rbtree_node_cmp_v],
page 19.

Chapter 3: Library Routines 7

3 Library Routines

3.1 Public Routines
3.1.1 rbtree_bnd_search

Search a red-black binary tree keeping track of sibling nodes.

Synopsis

#include <rbtree/rbtree.h>

void *rbtree_bnd_search(
RBTree rbtree,
const void *data,
void **prev,
void **next,
int (*cmp) (const void *,const void *)

)
Parameters

RBTree rbtree
the red-black tree to search

const void *data
the data to search for

void **prev
holding place for data that is found

void **next
holding place for data that is found

int (*cmp) (const void *,const void *)
The address of a comparison function. Set to RBRTREE_NULL_CMP to
use the tree’s initial comparison function.

Description

This routine searches a binary tree for the node for which the passed data compares equiv-
alently with the node’s data. It uses the passed comparison routine, if available. If not, it
uses that with which the tree was initialized. Note that in the former case the passed data
need not have the same form as the data stored in the node.

The comparison routine is called with the passed data as the first argument and the
node’s data as the second argument. It must return ‘-1’, ‘0’, or ‘1’ if, respectively, the first
argument is less than, equal to, or greater than the second.

As the tree is being searched, rbtree_bnd_search keeps track of the preceding and
succeeding in-order nodes. If the node is not found, the nodes which bracket the data are
returned. The result of the search is returned via the parameters prev, and next. If a node

Chapter 3: Library Routines 8

has data which matches the key data, both parameters are set to the node’s data pointer.
If a node is not found, and if there exists a previous in-order node, the parameter prev is
set to that node’s data pointer, else it is set to NULL. If there exists a succeeding in-order
node, the parameter next is set to its data pointer, else it is set to NULL.

Returns

It returns the node’s data pointer if the node can be found, NULL otherwise.

3.1.2 rbtree_bnd_search_node

Search a red-black binary tree keeping track of sibling nodes.

Synopsis

#include <rbtree/rbtree.h>

RBNode rbtree_bnd_search_node(
RBTree rbtree,
const void *data,
RBNode *prev,
RBNode *next,
int (*cmp) (const void *,const void *)

)
Parameters

RBTree rbtree
binary tree to search

const void *data
the data to search for

RBNode *prev
set to the previous node

RBNode *next
set to the next node

int (*cmp) (const void *,const void *)
The address of a comparison function. Set to RBTREE_NULL_CMP to
use the tree’s initial comparison function.

Description

This routine searches a binary tree for the node for which the passed data compares equiv-
alently with the node’s data. It uses the passed comparison routine, if available. If not, it
uses that with which the tree was initialized. Note that in the former case the passed data
need not have the same form as the data stored in the node.

The comparison routine is called with the passed data as the first argument and the
node’s data as the second argument. It must return ‘-1’, ‘0’, or ‘1’ if, respectively, the first
argument is less than, equal to, or greater than the second.

Chapter 3: Library Routines 9

As the tree is being searched, rbtree_bnd_search_node keeps track of the preceding
in-order and succeeding nodes. If the node is not found, the nodes which bracket the data
are returned. The result of the search is returned via the parameters prev and next. If a
node has data which matches the key data, both parameters are set to point at the node.
If a node is not found, and if there exists a previous in-order node, the parameter prev is
set to point at the node, else it is set to NULL. If there exists a succeeding in-order node,
the parameter next is set to point to it, else it is set to NULL.

Returns

It returns a handle to the found node, or NULL if not found.

3.1.3 rbtree_count
Determine the number of nodes in a red-black tree.

Synopsis

#include <rbtree/rbtree.h>

unsigned long rbtree_count(RBTree rbtree);

Parameters

RBTree rbtree
the tree in question
Description

This routine returns the number of nodes in an rbtree. As each tree keeps a counter of
how many nodes is in it, this is an inexpensive function to call.

3.1.4 rbtree_delete
Delete a red-black binary tree

Synopsis

#include <rbtree/rbtree.h>

void rbtree_delete(
RBTree rbtree,
void (*nfree) (void %),
Visit visit,
SiblingOrder sibling_order
);

Parameters

RBTree rbtree
the handle of the rbtree to delete

Chapter 3: Library Routines 10

void (*nfree) (void *)
a routine which deallocates node user memory, may be RBTREE_
NULL_DELETE

Visit visit
the order of deletion, either IN_ORDER, or POST_ORDER, (PRE_ORDER
is treated as POST_ORDER)

Possible values for a Visit are as follows: PRE_ORDER, IN_ORDER,
POST_ORDER

SiblingOrder sibling_order
the direction that the tree is parsed

Possible values for a SiblingOrder are as follows: LEFT_TO_RIGHT,
RIGHT_TO_LEFT

Description

This routine deletes a red-black binary tree, destroying all nodes in the specified order and
direction. It optionally takes a user supplied function which, when passed a node’s data
pointer, deallocates user node data. It is strongly suggested that the deallocation function
be specified.

3.1.5 rbtree_udelete
Delete a red-black binary tree.

Synopsis

#include <rbtree/rbtree.h>

void rbtree_udelete(
RBTree rbtree,
void (*nfree) (void *,void *),
void *udata,
Visit visit,
SiblingOrder sibling_order
);

Parameters

RBTree rbtree
the handle of the rbtree to delete

void (*nfree) (void *,void *)
a routine which deallocates node user memory, may be RBTREE_
NULL_DELETE

void *udata
a pointer to data to be passed to the action routine

Chapter 3: Library Routines 11

Visit visit
the order of deletion. (PRE_ORDER is treated as POST_ORDER)

Possible values for a Visit are as follows: PRE_ORDER, IN_ORDER,
POST_ORDER

SiblingOrder sibling_order
the direction that the tree is parsed

Possible values for a SiblingOrder are as follows: LEFT_TO_RIGHT,
RIGHT_TO_LEFT

Description

This routine deletes a red-black binary tree, destroying all nodes in the specified order and
direction. It optionally takes a user supplied function which, when passed a node’s data
pointer, deallocates possible user node data. It is strongly suggested that the deallocation
function be specified. This routine differs from rbtree_delete in that it can pass along
a pointer provided by the calling routine to the deallocation function routine, allowing
arbitrary data to be available to it.

3.1.6 rbtree_destroy

Search for a node in a red-black binary tree and destroy it.

Synopsis

#include <rbtree/rbtree.h>

void *rbtree_destroy(
RBTree rbtree,
const void *data,
int (*cmp) (const void *,const void *)

)
Parameters

RBTree rbtree
the red-black tree to search

const void *data
the data to search for

int (*cmp) (const void *,const void *)
The address of a comparison function. Set to RBTREE_NULL_CMP to
use the tree’s initial comparison function.

Description

rbtree_destroy searches a binary tree for the node for which the passed data compares
equivalently with the node’s data. It uses the passed comparison routine, if available. If

Chapter 3: Library Routines 12

not, it uses that with which the tree was initialized. In the former case the passed data
need not have the same form as the data stored in the node.

The comparison routine is called with the passed data as the first argument and the
node’s data as the second argument. It must return ‘-1’ ‘0’, or ‘1’ if, respectively, the first
argument is less than, equal to, or greater than the second.

rbtree_destroy frees the memory required by the node. The user must destroy the
data referenced by the node’s data pointer.

Returns

It returns the node’s data pointer if the node was found, NULL otherwise.

3.1.7 rbtree_destroy_dnode
Deallocate the memory associated with a detached node.
Synopsis

#include <rbtree/rbtree.h>

void rbtree_destroy_dnode(RBNode rbnode) ;

Parameters

RBNode rbnode
the handle of the detached node to destroy

Description

This routine deallocates the memory associated with a detached red-black tree node. The
user must have already destroyed the data associated with the node. The node handle must
have been returned by rbtree_detach_node.

3.1.8 rbtree_destroy_node
Remove a node from a binary tree and destroy it.
Synopsis

#include <rbtree/rbtree.h>

void *rbtree_destroy_node(
RBTree rbtree,
RBNode rbnode

);

Parameters

RBTree rbtree
the tree from which to remove the node

RBNode rbnode
the node to remove

Chapter 3: Library Routines 13

Description

This routine removes the passed node from the specified tree and deallocates the memory
associated with it. The user must destroy the data referenced by the node’s data pointer.
Returns

Returns the node’s data pointer if the node is not NULL or NIL(tree), NULL otherwise.

3.1.9 rbtree_detach_node
Remove a node from an red-black tree without destroying it.
Synopsis
#include <rbtree/rbtree.h>
RBNode rbtree_detach_node(
RBTree rbtree,

RBNode rbnode
)

Parameters

RBTree rbtree
the tree from which to remove the node

RBNode rbnode
the node to detach

Description

rbtree_detach_node detaches the specified node from the specified tree, but doesn’t delete
it. This is useful for inserting the node into another tree. Because of the way nodes are
deleted from trees, the node actually removed may not be the node passed to the routine.
The user supplied data is correctly tracked.

Returns

Returns the node that was actually detached, or NULL if the node is NULL or NIL(tree).

3.1.10 rbtree_insert

Create and insert a node into a red-black tree.

Synopsis

#include <rbtree/rbtree.h>

int rbtree_insert(
RBTree rbtree,
void *data

)

Chapter 3: Library Routines 14

Parameters

RBTree rbtree
a handle to the tree into which to insert the node

void *data
a pointer to the data
Description

rbtree_insert creates a node, sets its data pointer to the specified pointer, and inserts it
into the specified tree.

Returns

It returns ‘0’ if the insert was successful, ‘1’ if it was unable to create the new node.

3.1.11 rbtree_insert_dnode

Insert a detached node into a tree.

Synopsis
#include <rbtree/rbtree.h>
int rbtree_insert_dnode(
RBTree rbtree,

RBNode rbnode
)

Parameters

RBTree rbtree
a handle to the tree into which to insert the node

RBNode rbnode
the node to insert

Description

This routine inserts a detached node into a binary tree. It assumes that the tree’s in-
sert/delete comparison function can be applied to the data in the passed node. The node
handle must have been obtained from rbtree_detach_node.

Returns

It returns ‘1’ if the node is NULL or NIL(tree), ‘O’ otherwise.

3.1.12 rbtree_join

Join two red-black trees.

Chapter 3: Library Routines

Synopsis

#include <rbtree/rbtree.h>

void rbtree_join(
RBTree treel,
RBTree tree2

);

Parameters

RBTree treel
the tree to merge the second into

RBTree tree2
the tree to merge into the first tree

Description

15

This routine joins two redblack trees, moving nodes from the second tree to the first. It

doesn’t delete the second tree, just empties it. This routine is more efficient than calling

rbtree_detach_node and rbtree_insert_dnode.

3.1.13 rbtree_max

Determine the node with the maximum data.
Synopsis

#include <rbtree/rbtree.h>

void *rbtree_max(RBTree rbtree);

Parameters

RBTree rbtree
the red-black tree to scan

Description

This routine searches the tree for the node with the maximum data, as determined by the

comparison routine with which the tree was created.

Returns

It returns the node’s data pointer, NULL if the tree has no data.

3.1.14 rbtree_max_node

Determine the node with the maximum data.

Synopsis

#include <rbtree/rbtree.h>

Chapter 3: Library Routines 16

RBNode rbtree_max_node(RBTree rbtree);

Parameters

RBTree rbtree
the tree to search

Description

This routine searches the tree for the node with the maximum data, as determined by the
comparison routine with which the tree was created.

Returns

It returns a handle to the node if it exists, NULL if the tree is empty.

3.1.15 rbtree_min

Determine the node with the minimum data.

Synopsis

#include <rbtree/rbtree.h>

void *rbtree_min(RBTree rbtree);

Parameters

RBTree rbtree
the red-black tree to scan

Description

This routine searches the tree for the node with the minimum data, as determined by the
comparison routine with which the tree was created.

Returns

It returns the node’s data pointer, NULL if the tree has no data.

3.1.16 rbtree_min_node

Determine the node with the minimum data.

Synopsis

#include <rbtree/rbtree.h>

RBNode rbtree_min_node(RBTree rbtree);

Parameters

RBTree rbtree
the tree to search

Chapter 3: Library Routines 17

Description

This routine searches the tree for the node with the minimum data, as determined by the
comparison routine with which the tree was created.

Returns

It returns a handle to the node if it exists, NULL if the tree is empty.
3.1.17 rbtree_new

Create the root of a red-black tree.

Synopsis

#include <rbtree/rbtree.h>

RBTree rbtree_new(int (*cmp) (const void *,const void *));

Parameters

int (*cmp) (const void *,const void *)
a node comparison routine used to sort the nodes

Description

This routine creates the data structures necessary to implement the root of a red-black tree.
It requires a node comparison function which will be used to sort the nodes.

The comparison routine is usually only used for sorting, not searching, but may be if a
search or destroy routine is called without a specific comparison routine. It should return
‘=17, ¢0’, or ‘1’ depending upon whether the first node is respectively less than, equal to, or
greater than the second node.

Returns
It returns a handle to the new tree if successful, NULL if not.
3.1.18 rbtree_node_size
Return the size of an RBNode.
Synopsis
#include <rbtree/rbtree.h>
size_t rbtree_node_size(void);

Description

This routine returns the size of the internal structure used for each node. This does not
include user supplied data. Please note that this is a function call, not a macro!

3.1.19 rbtree_next_node

Determine the next in-order node to a given node.

Chapter 3: Library Routines

Synopsis

#include <rbtree/rbtree.h>

RBNode rbtree_next_node(
RBTree rbtree,
RBNode rbnode,
SiblingOrder sib_order

);
Parameters

RBTree rbtree
the tree to traverse

RBNode rbnode

the node to find the neighbor of

SiblingOrder sib_order

the direction of traversal

Possible values for a SiblingOrder are as follows: LEFT_TO_RIGHT,

RIGHT_TO_LEFT

Description

18

Determine the next in-order node (depending upon the user’s desired traversal direction).

Returns

It returns a handle to the next node or NULL if there is none.

3.1.20 rbtree_node_cmp_s

comparison assuming the nodes’ data pointer points at strings

Synopsis
#include <rbtree/rbtree.h>
int rbtree_node_cmp_s(
const void *dpl,

const void *dp2

)
Parameters

const void *dpl

the first datum to compare

const void *dp2

the second datum to compare

Chapter 3: Library Routines

Description

comparison assuming the nodes’ data pointer points at strings

3.1.21 rbtree_node_cmp_v

comparison based upon the arithmetic equality of the nodes’ data pointers

Synopsis

#include <rbtree/rbtree.h>

int rbtree_node_cmp_v(
const void *dpl,
const void *dp2

)
Parameters

const void *dpl
the first datum to compare

const void *dp2
the second datum to compare

Description

comparison based upon the arithmetic equality of the nodes’ data pointers

3.1.22 rbtree_node_get_data

Retrieve the data from a specified rbtree node.
Synopsis

#include <rbtree/rbtree.h>

void *rbtree_node_get_data(RBNode rbnode);

Parameters

RBNode rbnode
the node from which to extract the data

Description

Retrieve the data from a specified rbtree node.

Returns

It returns the node’s data pointer.

3.1.23 rbtree_node_put_data

Replace data pointer in a specified rbtree node.

19

Chapter 3: Library Routines 20

Synopsis

#include <rbtree/rbtree.h>

void rbtree_node_put_data(
RBNode rbnode,
void *data

)
Parameters

RBNode rbnode
the node into which to copy the data

void *data
the data to copy
Description

This routine replaces the data pointer in the specified rbtree node with the passed pointer.
It does not attempt to resort the tree, so the new data should not change the node’s position
in the tree (if it’s not detached).

3.1.24 rbtree_search

Search a red-black tree for a node with equivalent data.

Synopsis

#include <rbtree/rbtree.h>

void *rbtree_search(
RBTree rbtree,
const void *data,
int (*cmp) (const void *,const void *)

)
Parameters

RBTree rbtree
the red-black tree to search

const void *data
the data to search for

int (*cmp) (const void *,const void *)
The address of a comparison function. Set to RBTREE_NULL_CMP to
use the tree’s initial comparison function.

Description

rbtree_search searches the tree for the node for which the passed data compares equiv-
alently with the node’s data. It uses the passed comparison routine, if available. If not, it

Chapter 3: Library Routines 21

uses that with which the tree was initialized. In the former case the passed data need not
have the same form as the data stored in the node.

The comparison routine is called with the passed data as the first argument and the
node’s data as the second argument. It must return ‘-1’, ‘0’, or ‘1’ if, respectively, the first
argument is less than, equal to, or greater than the second.

Returns

It returns the node’s data pointer if the node was found, NULL otherwise.

3.1.25 rbtree_search_node

Search a red-black tree for a node with equivalent data.

Synopsis

#include <rbtree/rbtree.h>

RBNode rbtree_search_node(
RBTree rbtree,
const void *data,
int (*cmp) (const void *,const void *)

)
Parameters

RBTree rbtree
the tree to search

const void *data
the data to match

int (*cmp) (const void *,const void *)
The address of a comparison function. Set to RBTREE_NULL_CMP to
use the tree’s initial comparison function.

Description

This routine searches a red-black tree for the node for which the passed data compares
equivalently with the node’s data. It uses the passed comparison routine, if available. If
not, it uses that with which the tree was initialized. Note that in the former case the passed
data need not have the same form as the data stored in the node. The comparison routine
is called with the passed node’s data as the first argument and the tree node’s data as the
second argument. It must return ‘=1’, ‘0’, or ‘1’ if, respectively, the first argument is less
than, equal to, or greater than the second.

Returns

It returns a handle to the matching node, or NULL if not found.

Chapter 3: Library Routines 22

3.1.26 rbtree_traverse

Traverse a red-black binary tree in order, processing each node.

Synopsis

#include <rbtree/rbtree.h>

int rbtree_traverse(
RBTree rbtree,
int (*action) (void *nd),
SiblingOrder sibling_order
);

Parameters

RBTree rbtree
a handle to the rbtree to traverse

int (*action) (void *nd)
the user supplied action routine applied to each node

SiblingOrder sibling_order
the direction in which the tree is traversed

Possible values for a Sibling0Order are as follows: LEFT_TO_RIGHT,
RIGHT_TO_LEFT
Description

This routine walks along an rbtree, calling a user supplied action function at the in-order
traversals of each node. The tree traversal is aborted if the action routine returns non-zero.
rbtree_traverse is substantially faster than calling rbtree_walk with an in-order visit,
and uses fewer resources.

Returns
If the action routines all return ‘0’, it returns ‘0’, else it returns the value returned by the
last action routine called.
3.1.27 rbtree_utraverse
Traverse a red-black binary tree in order, processing each node.
Synopsis

#include <rbtree/rbtree.h>

int rbtree_utraverse(

RBTree rbtree,

int (*action) (void *nd,void *udata),
void *udata,

Chapter 3: Library Routines 23

SiblingOrder sibling_order
)3

Parameters

RBTree rbtree
a handle to the rbtree to traverse

int (*action) (void *nd,void *udata)
the user supplied action routine applied to each node

void *udata
a pointer to data to be passed to the action routine

SiblingOrder sibling_order
the direction in which the tree is traversed

Possible values for a SiblingOrder are as follows: LEFT_TO_RIGHT,
RIGHT_TO_LEFT

Description

This routine walks along an rbtree, calling a user supplied action function at the in-order
traversals of each node. The tree traversal is aborted if the action routine returns non-zero.
rbtree_utraverse is substantially faster than calling rbtree_uwalk with an in-order visit,
and uses fewer resources. This routine differs from rbtree_traverse in that it can pass
along a pointer provided by the calling routine to the action routine, allowing arbitrary
data to be available to the action routine.

Returns

If the action routines all return ‘0’, it returns ‘0’, else it returns the value returned by the
last action routine called.

3.1.28 rbtree_walk

Walk along a tree, processing each node.

Synopsis

#include <rbtree/rbtree.h>

int rbtree_walk(
RBTree rbtree,
int (*action) (void *nd,Visit visit,unsigned long level),
SiblingOrder sibling_order,
Visit visit

)
Parameters

RBTree rbtree
a handle to the rbtree to traverse

Chapter 3: Library Routines 24

int (*action) (void *nd,Visit visit,unsigned long level)
the user supplied action routine applied to each node

SiblingOrder sibling_order
The direction in which the tree is traversed.

Possible values for a SiblingOrder are as follows: LEFT_TO_RIGHT,
RIGHT_TO_LEFT

Visit visit
The node traversals at which to call the action routine. The logical
or of possible Visit values.

Possible values for a Visit are as follows: PRE_ORDER, IN_ORDER,
POST_ORDER

Description

This routine traverses an rbtree, calling a user supplied action function at selectable traver-
sals of each node (any combination of pre-order, in-order, or post-order). The function is
informed of which node traversal and which tree level it is called from. The walk is aborted
if the action routine returns non-zero.

The traversals at which the action routine is called at are specified by the logical or of
PRE_ORDER, IN_ORDER, or POST_ORDER.

Returns

If the action routines all return ‘0’, it returns ‘0’, else it returns the value returned by the
last action routine called.

3.1.29 rbtree_uwalk

Walk along a tree, processing each node.

Synopsis

#include <rbtree/rbtree.h>

int rbtree_uwalk(
RBTree rbtree,
int (*action) (void *nd,Visit visit,unsigned long level,void *udata),
void *udata,
SiblingOrder sibling_order,
Visit visit

)
Parameters

RBTree rbtree
a handle to the rbtree to traverse

Chapter 3: Library Routines 25

int (*action) (void *nd,Visit visit,unsigned long level,void
*xudata)
the user supplied action routine applied to each node

void *udata
a pointer to data to be passed to the action routine

SiblingOrder sibling_order
the direction in which the tree is traversed

Possible values for a Sibling0Order are as follows: LEFT_TO_RIGHT,
RIGHT_TO_LEFT

Visit visit
The node traversals at which to call the action routine. The logical
or of possible Visit values.

Possible values for a Visit are as follows: PRE_ORDER, IN_ORDER,
POST_ORDER

Description

This routine traverses an rbtree, calling a user supplied action function at selectable traver-
sals of each node (any combination of pre-order, in-order, or post-order). The function is
informed of which node traversal and which tree level it is called from. The walk is aborted
if the action routine returns non-zero. This routine differs from rbtree_walk in that it can
pass along a pointer provided by the calling routine to the action routine, allowing arbitrary
data to be available to the action routine.

The traversals at which the action routine is called at are specified by the logical or of
PRE_ORDER, IN_ORDER, or POST_ORDER.
Returns

If the action routines all return ‘0’, it returns ‘0’, else it returns the value returned by the
last action routine called.

3.2 Private Routines

3.2.1 BndSearch

Search a (sub)tree for a node with comporable data, keeping track of siblings.

Synopsis

#include <rbtree/rbtree.h>

static Node *BndSearch(
Tree *tree,
Node *x,
Node **prev,
Node **next,

Chapter 3: Library Routines 26

const void *data,
int (*cmp) (const void *,const void *)

)
Parameters

Tree *xtree
the tree to search

Node *x the node at which to start the search

Node **prev
where to stick a pointer to the predecessor node

Node **next
where to stick a pointer to the successor node

const void *data
the data to search for

int (*cmp) (const void *,const void *)

the address of a node comparison function

Description

This routine will search a tree for the node which has data comparable to that which is
passed, using the passed comparison routine. If the node does not exist, it returns the
predecessor and successor nodes. the start node need not be the root of the tree, allowing
for sub-tree searches.

Returns

It returns a pointer to the found node upon sucess. If no node is found, it sets the parameters
next and/or prev to point to the successor and predecessor nodes. If those nodes don’t exist,
the pointers are set to NIL(tree).

3.2.2 Delete

Remove a node from a tree.

Synopsis

#include <rbtree/rbtree.h>

static Node *Delete(
Tree *tree,
Node x*z

)
Parameters

Tree *xtree
the tree from which to delete the node

Node *z the node to delete

Chapter 3: Library Routines 27

Description

Delete removes a node from a tree. The node removed may not be that requested to
be removed, for algorithmic efficiency’s sake. in this case, the data is swapped with the
node that is removed, so everything works as expected. It does not deallocate the memory
associated with the node.

Returns

It returns a pointer to the node that was actually removed.

3.2.3 Free_in_order

Traverse a tree, freeing nodes in-order.

Synopsis
#include <rbtree/rbtree.h>
static void Free_in_order(
Tree *tree,
Node *node,

void (*nfree) (void *),
SiblingOrder sibling_order

)
Parameters

Tree *tree
the tree to free

Node *node
the starting node, must be ROOT (tree)

void (*nfree) (void *)
a free routine for node data, may be RBTREE_NULL_DELETE

SiblingOrder sibling_order

the order in which to traverse the tree

Possible values for a SiblingOrder are as follows: LEFT_TO_RIGHT,
RIGHT_TO_LEFT

Description

Traverse the given tree, freeing (in-order) as we go. Recursive, so it uses more resources
than Free_post_order.

3.2.4 uFree_in_order

Traverse a tree, freeing nodes in-order.

Chapter 3: Library Routines 28

Synopsis

#include <rbtree/rbtree.h>

static void uFree_in_order(
Tree *tree,
Node *node,
void (*nfree) (void *,void *),
void *udata,
SiblingOrder sibling_order

)
Parameters
Tree *xtree
the tree to free

Node *node
the starting node, must be ROOT (tree)

void (*nfree) (void *,void *)

a free routine for node data, may be RBTREE_NULL_DELETE
void *udata

a pointer to data to be passed to the action routine

SiblingOrder sibling_order
the order in which to traverse the tree

Possible values for a SiblingOrder are as follows: LEFT_TO_RIGHT,
RIGHT_TO_LEFT

Description

Traverse the given tree, freeing (in-order) as we go. Recursive, so it uses more resources
than Free_post_order. This routine differs from Free_in_order in that it can pass along
a pointer provided by the calling routine to the action routine, allowing arbitrary data to
be available to the action routine.

3.2.5 uFree_post_order
Free a tree, in post-order sequence.
Synopsis
#include <rbtree/rbtree.h>
static void uFree_post_order(
Tree *tree,
void (*nfree) (void *,void *),

void *udata,
SiblingOrder sibling_order

Chapter 3: Library Routines 29

Parameters

Tree *tree
the tree to destroy

void (*nfree) (void *,void *)
a routine to free the node data, may be RBTREE_NULL_DELETE

void *udata
a pointer to data to be passed to the action routine

SiblingOrder sibling_order
the order in which to free the tree

Possible values for a Sibling0Order are as follows: LEFT_TO_RIGHT,
RIGHT_TO_LEFT

Description

This routine traverses the given tree, freeing (post-order) as we go. It’s the fastest deletion
routine. Use it when it doesn’t matter in what order the data are deleted. This routine
differs from Free_post_order in that it can pass along a pointer provided by the calling
routine to the action routine, allowing arbitrary data to be available to the action routine.
The node data is passed to a user-supplied free routine, if available.

3.2.6 Free_post_order

Free a tree, in post-order sequence.

Synopsis

#include <rbtree/rbtree.h>

static void Free_post_order(
Tree *tree,

void (*nfree) (void %),
SiblingOrder sibling_order
)3

Parameters

Tree *tree
the tree to destroy

void (*nfree) (void *)
a routine to free the node data, may be RBTREE_NULL_DELETE

SiblingOrder sibling_order

the order in which to free the tree

Possible values for a SiblingOrder are as follows: LEFT_TO_RIGHT,
RIGHT_TO_LEFT

Chapter 3: Library Routines

Description

30

This routine traverses the given tree, freeing (post-order) as we go. It’s the fastest deletion

routine. Use it when it doesn’t matter in what order the data are deleted.

The node data is passed to a user-supplied free routine, if available.

3.2.7 Insert

Insert a node into a tree.

Synopsis

#include <rbtree/rbtree.h>

static void Insert(
Tree *tree,
Node *x

)
Parameters

Tree *tree
the tree into which to insert the node

Node *x the node to insert

Description

This routine inserts the passed node into the passed tree, using the default comparison node

routine.

3.2.8 JoinTrees
Join two trees.

Synopsis

#include <rbtree/rbtree.h>

static void JoinTrees(
Tree *treel,
Tree *tree2

);
Parameters

Tree *treel
the tree to merge the second into

Tree *tree2
the tree to merge into the first tree

Chapter 3: Library Routines 31

Description

This routine joins two trees, detaching nodes from the second and inserting them in the
first. As the second tree is completely gutted, the routine doesn’t spend time keeping its
redblack nature intact during the process.

3.2.9 LeftRotate

Perform a left rotation of a tree about a node.

Synopsis

#include <rbtree/rbtree.h>

static void LeftRotate(
Tree *tree,
Node x*x
)
Parameters

Tree *xtree
the tree to rotate

Node *x the pivot node

Description

Perform a left rotation of a tree about a node.

3.2.10 Maximum
Return the right most node in the tree.

Synopsis

#include <rbtree/rbtree.h>

static Node *Maximum(
Tree *tree,
Node x*x
)
Parameters

Tree *xtree
the tree to traverse

Node *x the origin node

Description

Return the right most node in the tree.

Chapter 3: Library Routines

3.2.11 Minimum
Return the left most node in the tree.

Synopsis

#include <rbtree/rbtree.h>

static Node *Minimum/(
Tree *tree,
Node *x
)
Parameters

Tree *xtree
the tree to traverse

Node *x the origin node

Description

Return the left most node in the tree.

3.2.12 Predecessor
Find the previous in-order node to a node.

Synopsis

#include <rbtree/rbtree.h>

static Node *Predecessor(
Tree *tree,
Node *x
)
Parameters

Tree *xtree
the tree to traverse

Node *x the origin node

Description

Find the previous in-order node to a node.

3.2.13 RightRotate

Perform a right rotation of a tree about a node.

Synopsis

#include <rbtree/rbtree.h>

32

Chapter 3: Library Routines 33

static void RightRotate(
Tree *tree,
Node x*y
);
Parameters

Tree *xtree
the tree to rotate

Node *y the pivot node

Description

Perform a right rotation of a tree about a node.

3.2.14 Search
Search a tree for a node with comparable data.
Synopsis
#include <rbtree/rbtree.h>
static Node *Search(
Tree *tree,
Node *x,
const void *data,

int (*cmp) (const void *,const void *)

);
Parameters

Tree *xtree
the tree to search

Node *x the node at which to start

const void *data
the data to search for

int (*cmp) (const void *,const void *)
the address of a node comparison routine

Description

This routine will search a tree for the node which has data comparable to that passed, using
the passed comparison routine. The start node need not be the root of the tree, allowing
for subtree searches.

Returns

It returns the node which matches, else NIL(tree).

Chapter 3: Library Routines

3.2.15 Successor

Find the next in-order node to a node.

Synopsis

#include <rbtree/rbtree.h>

static Node *Successor/(
Tree *tree,
Node *x

)
Parameters

Tree *xtree
the tree to traverse

Node *x the origin node

Description

Find the next in-order node to a node.

3.2.16 Traverse

Walk a tree, processing each node.

Synopsis

#include <rbtree/rbtree.h>

static int Traverse(

Tree *tree,

Node *node,

int (*action) (void *),
SiblingOrder sibling_order
);

Parameters

Tree *xtree
the tree to walk

Node *node
the node to start at, must be ROOT (tree)

int (*action) (void *)
the action to perform at each node

SiblingOrder sibling_order
the order in which to traverse the tree

Possible values for a SiblingOrder are as follows: LEFT_TO_RIGHT,

RIGHT_TO_LEFT

34

Chapter 3: Library Routines 35

Description

Traverse quickly walks a tree in a prescribed order, performing a user supplied action on
each node, in-order. If the action function returns non-zero, the walk is aborted.

Returns

9

If the action routines all return ‘0’, it returns ‘0’, else it returns the value returned by the

last action routine called.

3.2.17 uTraverse

Walk a tree, processing each node.

Synopsis

#include <rbtree/rbtree.h>

static int uTraverse(
Tree *tree,
Node *node,
int (*action) (void *,void *udata),
void *udata,
SiblingOrder sibling_order
);

Parameters

Tree *xtree
the tree to walk

Node *node
the node to start at, must be ROOT (tree)

int (xaction) (void *,void *udata)
the action to perform at each node

void *udata
a pointer to data to be passed to the action routine

SiblingOrder sibling_order
the order in which to traverse the tree

Possible values for a SiblingOrder are as follows: LEFT_TO_RIGHT,
RIGHT_TO_LEFT

Description

uTraverse quickly walks a tree in a prescribed order, performing a user supplied action
on each node, in-order. If the action function returns non-zero, the walk is aborted. This
routine differs from Traverse in that it can pass along a pointer provided by the calling
routine to the action routine, allowing arbitrary data to be available to the action routine.

Chapter 3: Library Routines 36

Returns

If the action routines all return ‘0’, it returns ‘0’, else it returns the value returned by the
last action routine called.

3.2.18 Walk

Walk a tree, performing an action at specified traversals of each node.

Synopsis

#include <rbtree/rbtree.h>

static int Walk(
Tree *tree,
Node *node,
int (*action) (void *data,Visit visit,unsigned long level),
SiblingOrder sibling_order,
Visit visit,
unsigned long level

)
Parameters

Tree *xtree
the tree to walk

Node *node
the node at which to start. must be ROOT (tree)

int (*action) (void *data,Visit visit,unsigned long level)
the action routine

SiblingOrder sibling_order
the order in which to walk

Possible values for a Sibling0Order are as follows: LEFT_TO_RIGHT,
RIGHT_TO_LEFT

Visit visit

the traversal(s) at which to call the action routine

Possible values for a Visit are as follows: PRE_ORDER, IN_ORDER,
POST_ORDER

unsigned long level

the level of the passed node. ‘0’ if the root node.

Description

Walk traverse a tree, calling a user supplied action routine at selectable traversals of each
node (any combination of pre-order, in-order, or post-order). The action routine is informed

Chapter 3: Library Routines 37

of which node traversal and which tree level it is called from. the walk is aborted if the
action routine returns non-zero.

The traversals at which the action routine is called at are specified by the logical or of
PRE_ORDER, IN_ORDER, or POST_ORDER.

Returns

)

If the action routines all return ‘0’°, it returns ‘0’, else it returns the value returned by the

last action routine called.

3.2.19 uWalk

Walk a tree, performing an action at specified traversals of each node.

Synopsis

#include <rbtree/rbtree.h>

static int uWalk(
Tree *tree,
Node *node,
int (*action) (void *data,Visit visit,unsigned long level,void *udata),
void *udata,
SiblingOrder sibling_order,
Visit visit,
unsigned long level

)
Parameters

Tree *xtree
the tree to walk

Node *node
the node at which to start. must be ROOT (tree)

int (*action) (void *data,Visit visit,unsigned long level,void
xudata)
the action routine

void *udata
a pointer to data to be passed to the action routine

SiblingOrder sibling_order
the order in which to walk

Possible values for a SiblingOrder are as follows: LEFT_TO_RIGHT,
RIGHT_TO_LEFT

Visit visit
the traversal(s) at which to call the action routine

Chapter 3: Library Routines 38

Possible values for a Visit are as follows: PRE_ORDER, IN_ORDER,
POST_ORDER

unsigned long level
the level of the passed node. ‘0’ if the root node.

Description

uWalk traverse a tree, calling a user supplied action routine at selectable traversals of each
node (any combination of pre-order, in-order, or post-order). The action routine is informed
of which node traversal and which tree level it is called from. the walk is aborted if the
action routine returns non-zero. This routine differs from Walk in that it can pass along a
pointer provided by the calling routine to the action routine, allowing arbitrary data to be
available to the action routine.

The traversals at which the action routine is called at are specified by the logical or of
PRE_ORDER, IN_ORDER, or POST_ORDER.

Returns

If the action routines all return ‘0’, it returns ‘0’, else it returns the value returned by the
last action routine called.

3.2.20 deleteNode
Delete a node.

Synopsis

#include <rbtree/rbtree.h>

static void deleteNode(Node *node);

Parameters

Node *node
the node to delete

Description

This routine deallocates memory associated with a node. If asked to delete a NULL node, it
just returns.

3.2.21 newNode
Allocate a new node and copy data into it.

Synopsis
#include <rbtree/rbtree.h>
static Node *newNode(

Tree *tree,
void *data

Chapter 3: Library Routines

)
Parameters

Tree *xtree
the tree that will contain the node

void *data
the data that the new node will contain

Description

Allocate a new node and copy data into it.

39

	Copying
	Usage
	Overview
	Data Encapsulation
	Node Comparison

	Library Routines
	Public Routines
	rbtree_bnd_search
	rbtree_bnd_search_node
	rbtree_count
	rbtree_delete
	rbtree_udelete
	rbtree_destroy
	rbtree_destroy_dnode
	rbtree_destroy_node
	rbtree_detach_node
	rbtree_insert
	rbtree_insert_dnode
	rbtree_join
	rbtree_max
	rbtree_max_node
	rbtree_min
	rbtree_min_node
	rbtree_new
	rbtree_node_size
	rbtree_next_node
	rbtree_node_cmp_s
	rbtree_node_cmp_v
	rbtree_node_get_data
	rbtree_node_put_data
	rbtree_search
	rbtree_search_node
	rbtree_traverse
	rbtree_utraverse
	rbtree_walk
	rbtree_uwalk

	Private Routines
	BndSearch
	Delete
	Free_in_order
	uFree_in_order
	uFree_post_order
	Free_post_order
	Insert
	JoinTrees
	LeftRotate
	Maximum
	Minimum
	Predecessor
	RightRotate
	Search
	Successor
	Traverse
	uTraverse
	Walk
	uWalk
	deleteNode
	newNode

