dvm3
1.0.9

Generated by Doxygen 1.5.6

Tue Dec 2 15:44:47 2008

CONTENTS

Contents

1 The dvim3 C++ template Library

1.1
1.2

Copyright e

OVEIVIEW . . . o o o o o e s s e e

2 Module Index

2.1

Modules e

3 Directory Hierarchy

3.1

Directories e

4 Class Index

4.1

Class Hierarchy

5 Class Index

5.1

Class List e

6 Module Documentation

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

dmv3_Vector: a 3-vector of doubles with numerical operations
dmv3_Matrix: a 3x3 matrix of doubles with numerical operations

dmv3_RotMat: a rotation matrix of doubles with numerical operations
Destructor; Constructors
6.4.1 Function Documentation
Initializers e
6.5.1 Function Documentation
ACCESSOIS . . v v v o e e e e e e
6.6.1 Function Documentation
Assignment, Op= Operatorso .
6.7.1 Function Documentation
6.72 Friends
Unary operators
6.8.1 Function Documentation

6.8.2 Friends

0 0o AN N »n b~ A~ b~ b & ~

N NN = = =
w0 N = 9 = O

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

CONTENTS ii

6.9 Row/Column inject/extract 27
6.9.1 Function Documentation 28

6.10 Vector-vector dyadic product 30
6.10.1 Function Documentation 31
6.10.2 Friends 31

6.11 Linear combination 32
6.11.1 Function Documentation 33
6.11.2 Friends 33

6.12 Matrix-Vector operations 36
6.12.1 Function Documentation 36
6.12.2 Friends 37

6.13 Matrix-Matrix operationso 38
6.13.1 Function Documentation 38
6.132 Friends 39

6.14 T/Ooperations.o 39
6.14.1 Function Documentation 40
6.142 Friends 41

6.15 Destructor; Constructors v v v i e e e e e 41
6.15.1 Function Documentation 42

6.16 Dot, Vector products 43
6.16.1 Function Documentation 43
6.16.2 Friends 44

6.17 Componentwise math operations 46
6.17.1 Friends 46

7 Directory Documentation 50
7.1 dvm3/Directory Reference 50
8 Class Documentation 50
8.1 dvm3_Matrix Class Reference 50
8.1.1 Detailed Description 53

8.2 dvm3_RotMat Class Reference 54

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

1 The dvm3 C++ template Library 1

8.2.1 Detailed Description 55
8.2.2 Constructor & Destructor Documentation 56
8.2.3 Member Function Documentation 60
8.3 dvm3_Vector Class Reference 63
8.3.1 Detailed Description 65
8.3.2 Member Function Documentation 66
8.3.3 Friends And Related Function Documentation. 67

1 The dvm3 C++ template Library

1.1 Copyright

Author: Terry Gaetz
Copyright (C) 2006 Smithsonian Astrophysical Observatory
This file is part of dvm3

dvm3 is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

dvm3 is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor Boston, MA 02110-1301, USA

1.2 Overview
The dvm3 package encapsulates 3-vectors and 3x3 matrices of doubles; common nu-
merical operations are defined. Unless otherwise noted, the operations are component
by component, e.g.,

vl * v2 = [v1(0)*xv2(0), v1(1l)=*v2(1l), v1(2)*v2(2)]

The dvm3 package consists of a collection of sub-packages:

e dvm3_Vector: a 3-vector of doubles

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

1.2 Overview 2

¢ dvm3_Matrix: a 3x3 matrix of doubles

¢ dvm3_RotMat: a 3x3 rotation matrix

The dvm3_Vector and dvm3_Matrix classes are simple classes to handle common nu-
merical operations on 3-vectors and 3-matrices of doubles. The classes provide two
forms of access to components:

* indexing, e.g, vector(1l), matrix(2,0); this is the most efficient access in the case
of the matrix class

 projection, e.g, vector[1], matrix[2]. For vectors this is equivalent to indexing.
For matrices, a pointer to the row data is returned so an additional dereferencing
must be performed.

The dvm3_RotMat class (a derived class of dvm3_Matrix) adds some methods useful
for manipulating proper rotation matrices. By proper, it is meant that the application of
the rotation matrix will not change the parity of the coordinates: right-handed coordi-
nates are transformed into right-handed coordinates.

These are intended as small components which can be inexpensively created on the
stack; their constructors and destructor do not make use of dynamic allocation. The
dvm3_Vector and dvm3_Matrix default constructors do not initialize the memory. The
dvm3_RotMat default constructor initializes the matrix to a unit matrix (i.e., zero rota-
tion).

Many of the operations are facilitated by the helper classes vm_VMath<T,N>, vm_-
V3Math<T>, and vm_M23math<T>. These classes contain a number of static mem-
ber functions which operate on C-style arrays. Further documentation for these can be
found under the documentation for vm_math.

Note that dvm3_Vector inherits from a struct, dvm3_VPOD which encapulates an array
of 3 doubles, while dvm3_Matrix inherits from a struct dvm3_MPOD, encapulating a
(1-dimensional) array of 9 doubles. These are both POD’s ("Plain O’ Data") as defined
in ISO Standard C++. This ensures that dvm3_VPOD and dvm3_MPOD both have the
semantics of C structs; this allows them to be copied or assigned as structs. Thus, for
example, memcpy() may be called with impunity on the POD subobjects.

The inheritence from the PODS is protected; this implementation detail is exposed
purely for efficiency considerations; users shall not assume that this implementation
detail will remain fixed for all time. DO NOT rely on the fact that there is a POD
struct under the hood or the details of the data member names within dvm3_VPOD
and dvm3_MPOD.

The resultant library is available as -ldvm3; the library include file is available as
<dvm3/dvm3.h>. Separate include files are provided for <dvm3/dvm3_vector.h>
<dvm3/dvm3_matrix.h>, and <dvm3/dvm3_rotmat.h>.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

2 Module Index 3
2 Module Index
2.1 Modules
Here is a list of all modules:
dmv3_Vector: a 3-vector of doubles with numerical operations 4
dmv3_Matrix: a 3x3 matrix of doubles with numerical operations 4
dmv3_RotMat: a rotation matrix of doubles with numerical operations 4
Destructor; Constructors 4
Initializers 6
Accessors 8
Assignment, op= operators 10
Unary operators 21
Row/Column inject/extract 27
Vector-vector dyadic product 30
Linear combination 32
Matrix-Vector operations 36
Matrix-Matrix operations 38
I/0O operations. 39
Destructor; Constructors 41
Dot, Vector products 43
Componentwise math operations 46

3 Directory Hierarchy

3.1 Directories

This directory hierarchy is sorted roughly, but not completely, alphabetically:

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

4 Class Index 4
dvm3 50

4 Class Index

4.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
dvm3_Matrix 50

dvm3_RotMat 54

dvm3_Vector 63

5 Class Index

5.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:
dvm3_Matrix 50
dvm3_RotMat 54
dvm3_Vector 63

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6 Module Documentation 5

6 Module Documentation

6.1 dmv3_Vector: a 3-vector of doubles with numerical operations

6.2 dmv3_Matrix: a 3x3 matrix of doubles with numerical opera-
tions

6.3 dmv3 RotMat: a rotation matrix of doubles with numerical
operations

6.4 Destructor; Constructors

Functions

e dvm3_Matrix::~dvm3_Matrix ()

e dvm3_Matrix::dvm3_Matrix ()

e dvm3_Matrix::dvm3_Matrix (dvm3_Matrix const &m)

e dvm3_Matrix::dvm3_Matrix (dvm3_Vector const &x, dvm3_Vector const &y,
dvm3_Vector const &z)

e dvm3_Matrix::dvm3_Matrix (double const x[|, double const y[], double const

z[])

6.4.1 Function Documentation
6.4.1.1 dvm3_Matrix::dvim3_Matrix (double const x[], double const y[], dou-
bleconstz[]) [inline, inherited]

Construct a dvm3_Matrix; initialize by row.

Parameters:

x lstrow
y 2nd row
Z 3rd row

Definition at line 924 of file dvm3_matrix.h.

6.4.1.2 dvm3_Matrix::dvm3_Matrix (dvm3_Vector const & x, dvm3_Vector
const & y, dvim3_Vector const & z7) [inline, inherited]

Construct a dvm3_Matrix; initialize by row.

Parameters:

x st row

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.5 Initializers 6

y 2nd row

Z 3rd row

Definition at line 914 of file dvm3_matrix.h.

References dvm3_Vector::data_.

6.4.1.3 dvm3_Matrix::dvm3_Matrix (dvm3_Matrix const & m) [inline,
inherited]

Copy constructor.

Parameters:

m matrix to be copied

Definition at line 910 of file dvm3_matrix.h.

References dvm3_Matrix::data_.

6.4.14 dvm3_Matrix::dvm3_Matrix () [inline, inherited]
Default constructor; NO INITIALIZATION IS APPLIED.

Definition at line 906 of file dvm3_matrix.h.

6.4.1.5 dvm3_Matrix::~dvim3_Matrix () [inline, inherited]
Do-nothing destructor.

Definition at line 902 of file dvm3_matrix.h.

6.5 Initializers

Functions

* void dvm3_Matrix::init_by_row (dvm3_Vector const &v1, dvm3_Vector const
&v2, dvm3_Vector const &v3)

¢ void dvm3_Matrix::init_by_row (double const v1[], double const v2[], double
const v3[])

e void dvm3_Matrix::init_by_col (dvm3_Vector const &v1, dvm3_Vector const
&v2, dvm3_Vector const &v3)

* void dvm3_Matrix::init_by_col (double const v1[], double const v2[], double
const v3[])

* void dvm3_Vector::init (double x, double y, double z)

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.5 Initializers 7

6.5.1 Function Documentation
6.5.1.1 void dvm3_Vector::init (double x, double y, double z) [inline,
inherited]

Initialization: initialize with x, y, z.

Parameters:

X X component
Yy y component

Z z component

Definition at line 702 of file dvm3_vector.h.

6.5.1.2 void dvim3_Matrix::init_by_col (double const vI[], double const v2[],
double const v3[]) [inline, inherited]

initialize this dvm3_Matrix by column.

Parameters:

vl 1st column
v2 2nd column

v3 3rd column

Definition at line 954 of file dvm3_matrix.h.

6.5.1.3 void dvm3_Matrix::init_by_col (dvm3_Vector const & vI, dvim3_Vector
const & v2, dvim3_Vector const & v3) [inline, inherited]

initialize this dvm3_Matrix by column.

Parameters:

vl 1st column
v2 2nd column

v3 3rd column

Definition at line 947 of file dvm3_matrix.h.

References dvm3_Vector::data_.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.6 Accessors 8

6.5.1.4 void dvm3_Matrix::init_by_row (double const vI[], double const v2[],
double const v3[]) [inline, inherited]

initialize this dvm3_Matrix by row.

Parameters:
vl 1strow
v2 2nd row

v3 3rd row

Definition at line 941 of file dvm3_matrix.h.

6.5.1.5 void dvm3_Matrix::init_by_row (dvm3_Vector const & vI, dvm3_-
Vector const & v2, dvim3_Vector const & v3) [inline, inherited]

initialize this dvm3_Matrix by row.

Parameters:

vl 1strow
v2 2nd row

v3 3rd row

Definition at line 934 of file dvm3_matrix.h.

References dvm3_Vector::data_.

6.6 Accessors

Functions

* double const * dvm3_Matrix::operator|[] (int i) const
* double * dvm3_Matrix::operator[| (int i)

* double dvm3_Matrix::operator() (int i, int j) const

* double & dvm3_Matrix::operator() (int i, int j)

* double const & dvm3_Vector::operator|] (int i) const
* double & dvm3_Vector::operator][| (int i)

* double dvm3_Vector::operator() (int i) const

¢ double & dvm3_Vector::operator() (int i)

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.6 Accessors

6.6.1 Function Documentation

6.6.1.1 double& dvm3_Vector::operator() (inti) [inherited]

Read/write access to component [i].

Returns:

reference to component

Parameters:

i index

6.6.1.2 double dvm3_Vector::operator() (inti) const [inherited]

Copy of component [i].

Returns:

copy of component [i]

Parameters:

i index

6.6.1.3 double & dvm3_Matrix::operator() (int i,
inherited]

Return element [i][j] (non-const version)

Returns:

element[i][j]

Parameters:
i index

J index

Definition at line 1018 of file dvm3_matrix.h.

int j) [inline,

6.6.1.4 double dvm3_Matrix::operator() (int i, int j) const [inline,

inherited]

Return element [i][j] (const version)

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.6 Accessors 10

Returns:

element[i][j]

Parameters:
i index

J index
Definition at line 1014 of file dvm3_matrix.h.

6.6.1.5] double& dvm3_Vector::operator[] (inti) [inherited]

Read/write access to component [i].

Returns:

reference to component

Parameters:

i index

6.6.1.6] double const& dvm3_Vector::operator[] (int /) const [inherited]

Readonly access to component [i].

Returns:

const reference to component

Parameters:

i index

6.6.1.7] double *x dvm3_Matrix::operator[] (inti) [inline, inherited]

Return row i (non-const version)

Returns:

row i

Parameters:

i index of row to be returned

Definition at line 1010 of file dvm3_matrix.h.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.7 Assignment, op= operators 11

6.6.1.8] double const x dvm3_Matrix::operator[] (int i) const [inline,
inherited]

Return row i (const version)

Returns:

row i

Parameters:

i index of row to be returned

Definition at line 1006 of file dvm3_matrix.h.

6.7 Assignment, op= operators

e dvm3_Matrix dvm3_Matrix::operator+ (dvm3_Matrix const &ml, dvm3_-
Matrix const &m2)

e dvm3_Matrix dvm3_Matrix::operator+ (double d, dvm3_Matrix const &m)

e dvm3_Matrix dvm3_Matrix::operator- (dvm3_Matrix const &m1, dvm3_Matrix
const &m?2)

e dvm3_Matrix dvm3_Matrix::operatorx (dvm3_Matrix const &ml, dvm3_-
Matrix const &m?2)

e dvm3_Matrix dvm3_Matrix::operator/ (dvm3_Matrix const &m1, dvm3_Matrix
const &m?2)

e dvm3_Matrix dvm3_Matrix::operator- (double d, dvm3_Matrix const &m)

e dvm3_Matrix dvm3_Matrix::operator* (double d, dvm3_Matrix const &m)

¢ dvm3_Matrix dvm3_Matrix::operator/ (double d, dvm3_Matrix const &m)

¢ dvm3_Matrix dvm3_Matrix::operator+ (dvm3_Matrix const &m, double d)

e dvm3_Matrix dvm3_Matrix::operator- (dvm3_Matrix const &m, double d)

e dvm3_Matrix dvm3_Matrix::operators (dvm3_Matrix const &m, double d)

e dvm3_Matrix dvm3_Matrix::operator/ (dvm3_Matrix const &m, double d)

Functions

e dvm3_Matrix & dvm3_Matrix::operator= (dvm3_Matrix const &rhs)
¢ dvm3_Matrix & dvm3_Matrix::operator= (double rhs)

e dvm3_Matrix & dvm3_Matrix::operator+= (dvm3_Matrix const &rhs)
e dvm3_Matrix & dvm3_Matrix::operator-= (dvm3_Matrix const &rhs)
e dvm3_Matrix & dvm3_Matrix::operators= (dvm3_Matrix const &rhs)
e dvm3_Matrix & dvm3_Matrix::operator/= (dvm3_Matrix const &rhs)
e dvm3_Matrix & dvm3_Matrix::operator+= (double rhs)

e dvm3_Matrix & dvm3_Matrix::operator-= (double rhs)

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.7 Assignment, op= operators 12

e dvm3_Matrix & dvm3_Matrix::operators= (double rhs)

e dvm3_Matrix & dvm3_Matrix::operator/= (double rhs)

* dvm3_Vector & dvm3_Vector::operator= (dvm3_Vector const &rhs)
e dvm3_Vector & dvm3_Vector::operator= (double rhs)

e dvm3_Vector & dvm3_Vector::operator+= (dvm3_Vector const &rhs)
e dvm3_Vector & dvm3_Vector::operator-= (dvm3_Vector const &rhs)
e dvm3_Vector & dvm3_Vector::operators= (dvm3_Vector const &rhs)
e dvm3_Vector & dvm3_Vector::operator/= (dvm3_Vector const &rhs)
e dvm3_Vector & dvm3_Vector::operator+= (double rhs)

e dvm3_Vector & dvm3_Vector::operator-= (double rhs)

e dvm3_Vector & dvm3_Vector::operator+= (double rhs)

e dvm3_Vector & dvm3_Vector::operator/= (double rhs)

6.7.1 Function Documentation

6.7.1.1 dvm3_Vector& dvm3_Vector::operator+= (double rhs) [inherited]

Multiply each component by rhs.

Returns:

modified vector

Parameters:

rhs value

6.7.1.2 dvm3_Vector& dvm3_Vector::operator+= (dvm3_Vector const & rhs)
[inherited]

Component-wise *= operator.

Returns:

modified vector

Parameters:

rhs value to be multiplied

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.7 Assignment, op= operators 13

6.7.1.3 dvm3_Matrix& dvm3_Matrix::operatorx= (double rhs)
[inherited]

Component-wise *= operator.
Returns:

modified matrix
Parameters:

rhs value by which each component of this matrix is to be multiplied

6.7.1.4 dvm3_Matrix& dvm3_Matrix::operator+= (dvm3_Matrix const & rhs)
[inherited]

Component-wise *= operator.
Returns:

modified matrix
Parameters:

rhs value by which each component of this matrix is to be multiplied

6.7.1.5 dvm3_Vector& dvm3_Vector::operator+= (double rhs) [inherited]

Add rhs to each component.

Returns:
modified vector
Parameters:

rhs value to be added

6.7.1.6 dvm3_Vector& dvm3_Vector::operator+= (dvm3_Vector const & rhs)
[inherited]

Component-wise += operator.
Returns:
modified vector

Parameters:

rhs value to be added

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.7 Assignment, op= operators 14

6.7.1.7 dvm3_Matrix& dvm3_Matrix::operator+= (double rhs)
[inherited]

Component-wise /= operator.
Returns:

modified matrix
Parameters:

rhs value to be added to each component of this matrix

6.7.1.8 dvm3_Matrix& dvm3_Matrix::operator+= (dvm3_Matrix const & rhs)
[inherited]

Component-wise += operator.
Returns:

modified matrix
Parameters:

rhs value to be added to each component of this matrix

6.7.1.9 dvm3_Vector& dvm3_Vector::operator-= (double rhs) [inherited]

Subtract rhs from each component.

Returns:
modified vector
Parameters:

rhs value to be added

6.7.1.10 dvm3_Vector& dvm3_Vector::operator-= (dvin3_Vector const & rhs)
[inherited]

Component-wise -= operator.
Returns:
modified vector

Parameters:

rhs value to be subtracted

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.7 Assignment, op= operators 15

6.7.1.11 dvm3_Matrix& dvmm3_Matrix::operator-= (double rhs)
[inherited]

Component-wise /= operator.

Returns:
modified matrix
Parameters:

rhs value to be subtracted from each component of this matrix

6.7.1.12 dvm3_Matrix& dvm3_Matrix::operator-= (dvm3_Matrix const & rhs)
[inherited]

Component-wise -= operator.

Returns:
modified matrix
Parameters:

rhs value to be subtracted from each component of this matrix

6.7.1.13 dvm3_Vector& dvm3_Vector::operator/= (double rhs)
[inherited]

Divide each component by rhs.
Returns:

modified vector
Parameters:

rhs value

6.7.1.14 dvm3_Vector& dvm3_Vector::operator/= (dvin3_Vector const & rhs)
[inherited]

Component-wise /= operator.
Returns:

modified vector
Parameters:

rhs value to be divided by

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.7 Assignment, op= operators 16

6.7.1.15 dvm3_Matrix& dvm3_Matrix::operator/= (double rhs)
[inherited]

Component-wise /= operator.

Returns:

modified matrix

Parameters:

rhs value by which each component of this matrix is to be divided

6.7.1.16 dvm3_Matrix& dvm3_Matrix::operator/= (dvm3_Matrix const & rhs)
[inherited]

Component-wise /= operator.

Returns:

modified matrix

Parameters:

rhs value by which each component of this matrix is to be divided

6.7.1.17 dvm3_Vector & dvm3_Vector::operator= (double rhs) [inline,
inherited]

Assignment operator

Returns:

modified vector
Parameters:

rhs value to be assigned

Definition at line 710 of file dvm3_vector.h.

6.7.1.18 dvm3_Vector & dvm3_Vector::operator= (dvm3_Vector const & rhs)
[inline, inherited]

Copy-assignment operator

Returns:

modified vector

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.7 Assignment, op= operators

17

Parameters:

rhs vector value for assignment

Definition at line 706 of file dvm3_vector.h.

References dvim3_Vector::data_.

6.7.1.19 dvm3_Matrix & dvm3_Matrix::operator= (double rhs)
inherited]

Assign the value of rhs to each component of this matrix

Returns:

modified matrix

Parameters:

rhs double value to be assigned to each component of this matrix

Definition at line 967 of file dvm3_matrix.h.

[inline,

6.7.1.20 dvm3_Matrix & dvm3_Matrix::operator= (dvm3_Matrix const & rhs)

[inline, inherited]

Copy-assignment operator

Returns:

modified matrix
Parameters:

rhs matrix value for assignment

Definition at line 960 of file dvm3_matrix.h.

References dvm3_Matrix::data_.

6.7.2 Friends

6.7.2.1 dvm3_Matrix operatorx (dvm3_Matrix const & m,
[friend, inherited]

Set each component to m[i][j] * d.

Returns:

result

double d)

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.7 Assignment, op= operators

18

Parameters:

m a matrix
d adouble

6.7.2.2 dvm3_Matrix operatorx (double d, dvmm3_Matrix const & m)

[friend, inherited]

Set each component to d * m[i][j].

Returns:

result

Parameters:

d adouble

m a matrix

6.7.2.3 dvm3_Matrix operator:x (dvin3_Matrix const & m1, dvin3_Matrix const

& m2) [friend, inherited]

Component-wise product of m1 and m2.

Returns:

component-wise product

Parameters:

ml 1st matrix

m2 2nd matrix

6.7.2.4 dvm3_Matrix operator+ (dvmm3_Matrix const & m,
[friend, inherited]

Set each component to m[i][j] + d.

Returns:

result

Parameters:

m a matrix
d adouble

double d)

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.7 Assignment, op= operators

19

6.7.2.5 dvm3_Matrix operator+ (double d, dvmm3_Matrix const & m)

[friend, inherited]

Set each component to d + m[i][j].

Returns:

result

Parameters:

d adouble

m a matrix

6.7.2.6 dvm3_Matrix operator+ (dvm3_Matrix const & m1, dvm3_Matrix const

& m2) [friend, inherited]

Component-wise sum of m1 and m2.

Returns:

component-wise sum

Parameters:

ml 1st matrix

m2 2nd matrix

6.7.2.7 dvm3_Matrix operator- (dvm3_Matrix const & m,
[friend, inherited]

Set each component to m[i][j] - d.

Returns:

result

Parameters:

m a matrix
d adouble

double d)

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.7 Assignment, op= operators

20

6.7.2.8 dvm3_Matrix operator- (double d, dvmm3_Matrix const & m)

[friend, inherited]

Set each component to d - m[i][j].

Returns:

result

Parameters:

d adouble

m a matrix

6.7.2.9 dvm3_Matrix operator- (dvm3_Matrix const & m1, dvm3_Matrix const

& m2) [friend, inherited]

Component-wise difference of m1 and m2.

Returns:

component-wise difference

Parameters:

ml 1st matrix

m2 2nd matrix

6.7.2.10 dvm3_Matrix operator/ (dvm3_Matrix const & m,
[friend, inherited]

Set each component to m[i][j] / d.

Returns:

result

Parameters:

m a matrix
d adouble

double d)

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.8 Unary operators 21

6.7.2.11 dvm3_Matrix operator/ (double d, dvim3_Matrix const & m)
[friend, inherited]

Set each component to d / m[i][j].

Returns:

result

Parameters:

d adouble

m a matrix

6.7.2.12 dvm3_Matrix operator/ (dvm3_Matrix const & mlI, dvm3_Matrix
const & m2) [friend, inherited]

Component-wise division of m1 and m2.

Returns:

component-wise ratio

Parameters:

ml 1st matrix

m2 2nd matrix

6.8 Unary operators

Collaboration diagram for Unary operators:

Matrix-Vector operations

| Row/Column inject/extract

Vector-vector dyadic product

Unary operators

Linear combination

1/O operations.

| Matrix-Matrix operations |

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.8 Unary operators 22

Modules

* Row/Column inject/extract

* Vector-vector dyadic product
* Linear combination

* Matrix-Vector operations

* Matrix-Matrix operations
 1/O operations.

¢ void dvm3_Matrix::orthonormalize ()

e void dvm3_Matrix::dyad_product (dvm3_Matrix &result, double const v1[],
double const v2[)

e void dvm3_Matrix::mvmult (double result[], dvm3_Matrix const &m, double
const v[])

e void dvm3_Matrix::mtvmult (dvm3_Vector &result, dvm3_Matrix const &m,
dvm3_Vector const &V)

e void dvm3_Matrix::mtvmult (double result[], dvm3_Matrix const &m, double
const v[])

e dvm3_Matrix dvm3_Matrix::operator- (dvm3_Matrix const &m1, dvm3_Matrix
const &m?2)

e dvm3_Matrix dvm3_Matrix::operatorx (dvm3_Matrix const &ml, dvm3_-
Matrix const &m2)

e dvm3_Matrix dvm3_Matrix::operator/ (dvm3_Matrix const &m1, dvm3_Matrix
const &m?2)

¢ dvm3_Matrix dvm3_Matrix::operator- (double d, dvm3_Matrix const &m)

e dvm3_Matrix dvm3_Matrix::operator* (double d, dvm3_Matrix const &m)

¢ dvm3_Matrix dvm3_Matrix::operator/ (double d, dvm3_Matrix const &m)

e dvm3_Matrix dvm3_Matrix::operator+ (dvm3_Matrix const &m, double d)

e dvm3_Matrix dvm3_Matrix::operator- (dvm3_Matrix const &m, double d)

e dvm3_Matrix dvm3_Matrix::operators (dvm3_Matrix const &m, double d)

e dvm3_Matrix dvm3_Matrix::operator/ (dvm3_Matrix const &m, double d)

Functions

e dvm3_Matrix & dvm3_Matrix::operator+ ()
e dvm3_Matrix & dvm3_Matrix::operator- ()
e dvm3_Vector & dvm3_Vector::operator+ ()
¢ dvm3_Vector & dvm3_Vector::operator- ()

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.8 Unary operators 23

6.8.1 Function Documentation

6.8.1.1 dvm3_Vector& dvim3_Vector::operator+ () [inherited]

Do-nothing unary +; provided for completeness.

6.8.1.2 dvm3_Matrix & dvm3_Matrix::operator+ () [inline,
inherited]

Do-nothing unary +; provided for completeness.

Definition at line 1021 of file dvm3_matrix.h.

6.8.1.3 dvm3_Vector& dvm3_Vector::operator- () [inherited]

Unary -; negates each component of this matrix

6.8.1.4 dvm3_Matrix & dvm3_Matrix::operator- 0 I[inline,
inherited]

Unary -; negates each component of this matrix

Definition at line 1025 of file dvm3_matrix.h.

6.8.1.5 void dvm3_Matrix::orthonormalize () [inherited]
Force the matrix to be a proper orthonormal matrix.

The y row is replaced by z cross X, and then x is replaced with y cross z. Normalize all
three rows are normalized. This forms a right-handed orthonormal triple.

"Proper", in this context, means that it preserves the parity of the coordinate system,
transforming right-handed coordinates into right-handed coordinates.

Definition at line 36 of file dvm3_matrix.cc.

Referenced by dvm3_RotMat::dvm3_RotMat().

6.8.2 Friends

6.8.2.1 void dyad_product (dvm3_Matrix & result, double const vI[], double
constv2[]) [friend, inherited]

Form dyadic product (outer product) of vectors v1 and v2.

For each i, j: result[i][]j] = v1[i] * Vv2[]]

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.8 Unary operators 24

Parameters:

result dyadic product
vl 1st vector

v2 2nd vector

Definition at line 1099 of file dvm3_matrix.h.

6.8.2.2 void mtvmult (double result[], dvm3_Matrix const & m, double const
v[]) [friend, inherited]

Matrix multiplication of vector v by transpose of matrix m.

result = (transpose of m) _matrix _multiply_ v.

Parameters:

result product
m matrix

Vv vector

Definition at line 1122 of file dvm3_matrix.h.

6.8.2.3 void mtvmult (dvin3_Vector & result, dvm3_Matrix const & m, dvm3_-
Vector const & v) [friend, inherited]

Matrix multiplication of vector v by transpose of matrix m.

result = (transpose of m) _matrix_multiply_ v.

Parameters:

result product
m matrix

v vector

Definition at line 1118 of file dvm3_matrix.h.

6.8.2.4 void mvmult (double result[], dvm3_Matrix const & m, double const
v[]) [friend, inherited]

Matrix multiplication of vector v by matrix m.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.8 Unary operators 25

result = m _matrix_multiply_ v.

Parameters:

result product
m matrix

v vector

Definition at line 1114 of file dvm3_matrix.h.

6.8.2.5 dvm3_Matrix operatorx (dvim3_Matrix const & m, double d)
[friend, inherited]

Set each component to m[i][j] * d.

Returns:

result

Parameters:

m a matrix
d adouble

6.8.2.6 dvm3_Matrix operatorx (double d, dvm3_Matrix const & m)
[friend, inherited]

Set each component to d * m[i][j].

Returns:

result

Parameters:

d adouble

m a matrix

6.8.2.7 dvm3_Matrix operatorx (dvm3_Matrix const & mI, dvm3_Matrix const
& m2) [friend, inherited]

Component-wise product of m1 and m2.

Returns:

component-wise product

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.8 Unary operators

26

Parameters:

ml 1st matrix

m2 2nd matrix

6.8.2.8 dvm3_Matrix operator+ (dvmm3_Matrix const & m,
[friend, inherited]

Set each component to m[i][j] + d.

Returns:

result

Parameters:

m a matrix
d adouble

6.8.2.9 dvm3_Matrix operator- (dvm3_Matrix const & m,
[friend, inherited]

Set each component to m[i][j] - d.

Returns:

result

Parameters:

m a matrix
d adouble

double d)

double d)

6.8.2.10 dvm3_Matrix operator- (double d, dvm3_Matrix const & m)

[friend, inherited]

Set each component to d - m[i][j].

Returns:

result

Parameters:

d adouble

m a matrix

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.8 Unary operators 27

6.8.2.11 dvm3_Matrix operator- (dvm3_Matrix const & mlI, dvm3_Matrix
const & m2) [friend, inherited]

Component-wise difference of m1 and m2.

Returns:

component-wise difference

Parameters:

ml 1st matrix

m2 2nd matrix

6.8.2.12 dvm3_Matrix operator/ (dvm3_Matrix const & m, double d)
[friend, inherited]

Set each component to m[i][j] / d.

Returns:

result

Parameters:

m a matrix
d adouble

6.8.2.13 dvm3_Matrix operator/ (double d, dvm3_Matrix const & m)
[friend, inherited]

Set each component to d / m[i][j].

Returns:

result

Parameters:

d adouble

m a matrix

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.9 Row/Column inject/extract 28

6.8.2.14 dvm3_Matrix operator/ (dvm3_Matrix const & mlI, dvm3_Matrix
const & m2) [friend, inherited]

Component-wise division of m1 and m2.

Returns:

component-wise ratio

Parameters:

ml 1st matrix

m2 2nd matrix

6.9 Row/Column inject/extract

Collaboration diagram for Row/Column inject/extract:

| Unary operators |<_| Row/Column inject/extract

Functions

¢ void dvm3_Matrix::inject_row (int whichrow, dvm3_Vector const &new_row)
* void dvm3_Matrix::inject_row (int whichrow, double const new_row[])

* void dvm3_Matrix::inject_col (int whichcol, dvm3_Vector const &col)

* void dvm3_Matrix::inject_col (int whichcol, double const col[])

¢ void dvm3_Matrix::extract_row (int whichrow, dvm3_Vector &row) const

¢ void dvm3_Matrix::extract_row (int whichrow, double row[]) const

¢ void dvm3_Matrix::extract_col (int whichcol, dvm3_Vector &col) const

e void dvm3_Matrix::extract_col (int whichcol, double *col) const

6.9.1 Function Documentation
6.9.1.1 void dvm3_Matrix::extract_col (int whichcol, double * col) const
[inherited]

Copy column whichcol into supplied vector

Parameters:

whichcol index of column to be copied

col destination (C-style vector)

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.9 Row/Column inject/extract 29

6.9.1.2 void dvin3_Matrix::extract_col (int whichcol, dvm3_Vector & col) const
[inline, inherited]

Copy column whichcol into supplied vector

Parameters:

whichcol index of column to be copied

col destination

Definition at line 1002 of file dvm3_matrix.h.

References dvm3_Vector::data_.

6.9.1.3 void dvim3_Matrix::extract_row (int whichrow, double row[]) const
[inline, inherited]

Copy row whichrow into supplied vector

Parameters:

whichrow index of row to be copied

row destination (C-style vector)

Definition at line 990 of file dvm3_matrix.h.

6.9.1.4 void dvm3_Matrix::extract_row (int whichrow, dvm3_Vector & row)
const [inline, inherited]

Copy row whichrow into supplied dvm3_Vector

Parameters:

whichrow index of row to be copied

row destination

Definition at line 994 of file dvm3_matrix.h.

References dvm3_Vector::data_.

6.9.1.5 void dvm3_Matrix::inject_col (int whichcol, = double const col[])
[inline, inherited]

Replace column whichcol by new_col

Parameters:

whichcol index of column to be replaced

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.9 Row/Column inject/extract 30

new_col replacement column (C-style vector)

Definition at line 982 of file dvm3_matrix.h.

6.9.1.6 void dvm3_Matrix::inject_col (int whichcol, dvm3_Vector const & col)
[inline, inherited]

Replace column whichcol by new_col

Parameters:

whichcol index of column to be replaced

new_col replacement column

Definition at line 986 of file dvm3_matrix.h.

References dvm3_Vector::data_.

6.9.1.7 void dvm3_Matrix::inject_row (int whichrow, double const new_row[])
[inline, inherited]

Replace row whichrow by new_row

Parameters:

whichrow index of row to be replaced

new_row replacement row (C-style vector)

Definition at line 974 of file dvm3_matrix.h.

6.9.1.8 void dvm3_Matrix::inject_row (int whichrow, dvm3_Vector const &
new_row) [inline, inherited]

Replace row whichrow by new_row

Parameters:

whichrow index of row to be replaced

new_row replacement row

Definition at line 978 of file dvm3_matrix.h.

References dvim3_Vector::data_.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.10 Vector-vector dyadic product 31

6.10 Vector-vector dyadic product

Collaboration diagram for Vector-vector dyadic product:

| Unary operators |<_| Vector-vector dyadic product

* void dvm3_Matrix::dyad_product (dvm3_Matrix &result, dvm3_Vector const
&v1, dvm3_Vector const &v2)

¢ void dvm3_Matrix::dyad_product (dvm3_Matrix &result, double const v1[],
double const v2[])

Functions

* void dvm3_Matrix::dyad_product (dvm3_Vector const &v1, dvm3_Vector const
&v2)
* void dvm3_Matrix::dyad_product (double const v1[], double const v2[])

6.10.1 Function Documentation

6.10.1.1 void dvm3_Matrix::dyad_product (double const vI[], double const
v2[]) [inline, inherited]

Form dyadic product (outer product) of vectors vl and v2.

For each i, j: m[il[3j] = v1[i] » v2[]]

Parameters:
vl 1st vector

v2 2nd vector

Definition at line 1064 of file dvm3_matrix.h.

6.10.1.2 void dvm3_Matrix::dyad_product (dvm3_Vector const & vI, dvm3_-
Vector const & v2) [inherited]

Form dyadic product (outer product) of vectors v1 and v2.

For each i, j: m[il[3j] = v1[i] » v2[]]

Parameters:

vl 1st vector
v2 2nd vector

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.11 Linear combination 32

6.10.2 Friends

6.10.2.1 void dyad_product (dvm3_Matrix & result, double const vI[], double
constv2[]) [friend, inherited]

Form dyadic product (outer product) of vectors vl and v2.
For each i, j: result[i][]J] = v1[i] * Vv2[]]

Parameters:

result dyadic product
vl 1st vector

v2 2nd vector

Definition at line 1099 of file dvm3_matrix.h.

6.10.2.2 void dyad_product (dvm3_Matrix & result, dvm3_Vector const & v1,
dvm3_Vector const & v2) [friend, inherited]

Form dyadic product (outer product) of vectors v1 and v2.
For each i, j: result[i][]J] = v1[i] * Vv2[]]

Parameters:

result dyadic product
vl 1st vector

v2 2nd vector

Definition at line 1093 of file dvm3_matrix.h.

6.11 Linear combination

Collaboration diagram for Linear combination:

| Unary operators |<_| Linear combination

e void dvm3_Matrix::lincomb (dvm3_Matrix &result, double c1, dvm3_Matrix
const &ml, double c2, dvm3_Matrix const &m?2)

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.11 Linear combination 33

e void dvm3_Matrix::mvmult (dvm3_Vector &result, dvm3_Matrix const &m,
dvm3_Vector const &vV)

¢ void dvm3_Matrix::mvmult (double result[], dvm3_Matrix const &m, double
const v[])

e void dvm3_Matrix::mtvmult (dvm3_Vector &result, dvm3_Matrix const &m,
dvm3_Vector const &vV)

e void dvm3_Matrix::mtvmult (double result[], dvm3_Matrix const &m, double
const v[])

e void dvm3_Vector::lincomb (dvm3_Vector &result, double c1, dvm3_Vector
const &v1, double ¢2, dvm3_Vector const &v2)

Functions

¢ void dvm3_Matrix::lincomb (double c1, dvm3_Matrix const &m1l, double c2,
dvm3_Matrix const &m2)

e void dvm3_Vector::lincomb (double c1, dvm3_Vector const &v1, double c2,
dvm3_Vector const &v2)

6.11.1 Function Documentation
6.11.1.1 void dvm3_Vector::lincomb (double cI, dvm3_Vector const & vI, dou-
ble c2, dvin3_Vector const & v2) [inherited]

Form linear combination: this = c1 * vl + ¢c2 x v2.

For each i: v[i] = clxvl[i] + c2+*v[i]

Parameters:

cl 1stscalar
vl 1st vector
¢2 2nd scalar

v2 2nd vector

6.11.1.2 void dvm3_Matrix::lincomb (double cI, dvm3_Matrix const & ml,
double c2, dvm3_Matrix const & m2) [inline, inherited]

Form linear combination: this = c1 * m1 + c2 * m2.

For each i, J: m[i]1[J] = cl*ml[i][J] + c2*xm2[i][7J]

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.11 Linear combination 34

Parameters:

cl 1stscalar
ml 1st matrix
¢2 2nd scalar

m2 2nd matrix

Definition at line 1068 of file dvm3_matrix.h.

References dvm3_Matrix::data_.

6.11.2 Friends
6.11.2.1 void lincomb (dvm3_Vector & result, double cI, dvim3_Vector const &
vl, double c2, dvm3_Vector const & v2) [friend, inherited]

Linear combination c1 * v1 + ¢c2 x v2.

Parameters:
result linear combination cl * v1 +¢c2 % v2.
cl 1stscalar
vl 1st vector
¢2 2nd scalar

v2 2nd vector

6.11.2.2 void lincomb (dvin3_Matrix & result, double cI, dvm3_Matrix const
& ml, double c2, dvim3_Matrix const & m2) [friend, inherited]

Form linear combination: result = c1 * m1 + c2 * m2.

For each i, j: result[i][J] = clxml[i][J] + c2+m2[i][]]

Parameters:
result resultant linear combination
cl 1stscalar
ml 1st matrix
¢2 2nd scalar

m2 2nd matrix

Definition at line 1104 of file dvm3_matrix.h.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.11 Linear combination 35

6.11.2.3 void mtvmult (double result[], dvm3_Matrix const & m, double const
v[]) [friend, inherited]

Matrix multiplication of vector v by transpose of matrix m.

result = (transpose of m) _matrix _multiply_ v.

Parameters:

result product
m matrix

Vv vector

Definition at line 1122 of file dvm3_matrix.h.

6.11.2.4 void mtvmult (dvm3_Vector & result, dvmn3_Matrix const & m, dvim3_-
Vector const & v) [friend, inherited]

Matrix multiplication of vector v by transpose of matrix m.

result = (transpose of m) _matrix_multiply_ v.

Parameters:

result product
m matrix

v vector

Definition at line 1118 of file dvm3_matrix.h.

6.11.2.5 void mvmult (double result[], dvm3_Matrix const & m, double const
v[]) [friend, inherited]

Matrix multiplication of vector v by matrix m.
result = m _matrix_multiply_ v.

Parameters:

result product
m matrix

v vector

Definition at line 1114 of file dvm3_matrix.h.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.12 Matrix-Vector operations 36

6.11.2.6 void mvmult (dvm3_Vector & result, dvim3_Matrix const & m, dvin3_-
Vector const & v) [friend, inherited]

Matrix multiplication of vector v by matrix m.

result = m _matrix_multiply_ v.

Parameters:

result product
m matrix

v vector

Definition at line 1110 of file dvm3_matrix.h.

6.12 Matrix-Vector operations

Collaboration diagram for Matrix-Vector operations:

| Unary operators |<_| Matrix-Vector operations

e void dvm3_Matrix::mvmult (dvm3_Vector &result, dvm3_Matrix const &m,
dvm3_Vector const &V)

Functions

e void dvm3_Matrix::mvmult (dvm3_Vector &result, dvm3_Vector const &v)
const

¢ void dvm3_Matrix::mvmult (double result[|, double const v[]) const

e void dvm3_Matrix::mtvmult (dvm3_Vector &result, dvm3_Vector const &v)
const

¢ void dvm3_Matrix::mtvmult (double result[], double const v[]) const

6.12.1 Function Documentation

6.12.1.1 void dvm3_Matrix::mtvmult (double result[], double const v[]) const
[inline, inherited]

Matrix multiplication of vector v by the transpose of this matrix.

result = (transpose of *this) _matrix_multiply_ v.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.12 Matrix-Vector operations 37

Parameters:

result resultant vector

v vector

Definition at line 1085 of file dvm3_matrix.h.

6.12.1.2 void dvm3_Matrix::mtvmult (dvm3_Vector & result, dvm3_Vector
const & v) const [inline, inherited]

Matrix multiplication of vector v by the transpose of this matrix.

result = (transpose of *this) _matrix_multiply_ wv.

Parameters:

result resultant vector

v vector

Definition at line 1081 of file dvm3_matrix.h.

References dvm3_Vector::data_.

6.12.1.3 void dvm3_Matrix::mvmult (double result[], double const v[]) const
[inline, inherited]

Matrix multiplication of vector v by this matrix.

result = xthis _matrix multiply_ v.

Parameters:

result resultant vector

v vector

Definition at line 1077 of file dvm3_matrix.h.

6.12.1.4 void dvm3_Matrix::mvmult (dvim3_Vector & result, dvm3_Vector
const &v)const [inline, inherited]

Matrix multiplication of vector v by this matrix.

result = xthis _matrix _multiply_ v.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.13 Matrix-Matrix operations 38

Parameters:

result resultant vector

v vector

Definition at line 1073 of file dvm3_matrix.h.
References dvm3_Vector::data_.
6.12.2 Friends

6.12.2.1 void mvmult (dvm3_Vector & result, dvm3_Matrix const & m, dvim3_-
Vector const & v) [friend, inherited]

Matrix multiplication of vector v by matrix m.
result = m _matrix_multiply_ v.

Parameters:

result product
m matrix

v vector

Definition at line 1110 of file dvm3_matrix.h.

6.13 Matrix-Matrix operations

Collaboration diagram for Matrix-Matrix operations:

| Unary operators |<_| Matrix-Matrix operations

e void dvm3_Matrix::mmult (dvm3_Matrix &result, dvm3_Matrix const &ml,
dvm3_Matrix const &m?2)

Functions

e void dvm3_Matrix::mmult (dvm3_Matrix const &ml, dvm3_Matrix const
&m?2)

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.14 1/0 operations. 39

6.13.1 Function Documentation

6.13.1.1 void dvm3_Matrix::mmult (dvm3_Matrix const & mI, dvm3_Matrix
const & m2) [inline, inherited]

Matrix multiplication of m1 by m2.
*this = ml _matrix_multiply_ m2.

Parameters:

ml 1st matrix

m2 2nd matrix

Definition at line 1089 of file dvm3_matrix.h.
References dvm3_Matrix::data_.
6.13.2 Friends

6.13.2.1 void mmult (dvm3_Matrix & result, dvm3_Matrix const & m1, dvin3_-
Matrix const & m2) [friend, inherited]

Matrix multiplication of m1 by m2.

/ result = ml _matrix_multiply_ m2.

Parameters:

result product
ml 1st matrix

m2 2nd matrix

Definition at line 1126 of file dvm3_matrix.h.

6.14 1/0 operations.

Collaboration diagram for I/O operations.:

Unary operators |<_| I/O operations.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.14 1/0 operations. 40

Functions

_nn

* std::ostream & dvm3_Matrix::print_on (std::ostream &os, char const pre[]="",
char const post[]="") const

* void dvm3_Matrix::cprint_on (FILE xo0s, char const prefix[]=
postfix[]="")

e std::ostream & dvm3_Vector::print_on (std::ostream &os, char const pre[]="",

, char const

char const post[]="") const
e void dvm3_Vector::cprint_on (FILE xof, char const prefix[]="", char const
postfix[]="")
Friends

* std::ostream & dvm3_Matrix::operator<< (std::ostream &os, dvm3_Matrix
const &)

e std::ostream & dvm3_Vector::operator<< (std::ostream &os, dvm3_Vector
const &)

6.14.1 Function Documentation

6.14.1.1 void dvm3_Vector::cprint_on (FILE x of, char const prefix[] = "",
char const postfix[]="") [inherited]

Print this dvm3_ Vector to a FILE* stream.

Parameters:

of the FILEx

v vector to be printed

prefix optional prefix string
postfix optional postfix string

6.14.1.2 void dvm3_Matrix::cprint_on (FILE x os, char const prefix[] = "",
char const postfix[]="") [inline, inherited]

Print this dvm3_Matrix to a FILE* stream.

Parameters:

of the FILEx

v vector to be printed

prefix optional prefix string
postfix optional postfix string

Definition at line 1138 of file dvm3_matrix.h.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.14 1/0 operations. 41

6.14.1.3 std::ostream& dvm3_Vector::print_on (std::ostream & os, char const
pre[1="", char constpost[]="") const [inherited]

Print this dvm3_ Vector to an ostream.

Parameters:

os the ostream
prefix optional prefix string
postfix optional postfix string

6.14.1.4 std::ostream & dvm3_Matrix::print_on (std::ostream & os, char const
pre[1="", char constpost[]="")const [inline, inherited]

Print this dvm3_Matrix to an ostream.

Parameters:

os the ostream
prefix optional prefix string

postfix optional postfix string

Definition at line 1130 of file dvm3_matrix.h.

6.14.2 Friends

6.14.2.1 std::ostream& operator<< (std::ostream & os, dvm3_Vector const &)
[friend, inherited]

Formatted dvm3_Matrix output to an ostream.

Parameters:

os the ostream

6.14.2.2 std::ostream& operator<< (std::ostream & os, dvm3_Matrix const &
m) [friend, inherited]

Formatted dvm3_Matrix output to an ostream.

Parameters:

os the ostream

Definition at line 1134 of file dvm3_matrix.h.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.15 Destructor; Constructors 42

6.15 Destructor; Constructors

Functions

e dvm3_Vector::~dvm3_Vector ()

e dvm3_Vector::dvm3_Vector ()

e dvm3_Vector::dvm3_Vector (double x, double y, double z)
e dvm3_Vector::dvm3_Vector (dvm3_Vector const &other)
¢ void dvm3_Vector::copy_from_cvec (double const *cv)

¢ void dvm3_Vector::copy_to_cvec (double *v) const

6.15.1 Function Documentation
6.15.1.1 void dvm3_Vector::copy_from_cvec (double const x cv) [inline,
inherited]

Copy operation: copy from a c-style vector.

Parameters:

cv vector to copy

REQUIREMENT: cv has a length of at least 3 contiguous doubles and is appropriately
aligned for doubles.

Definition at line 718 of file dvm3_vector.h.

6.15.1.2 void dvm3_Vector::copy_to_cvec (double x v) const [inline,
inherited]

Copy operation: copy to a c-style vector.

Parameters:

v vector copy

REQUIREMENT: cv has a length of at least 3 contiguous doubles and is appropriately
aligned for doubles.

Definition at line 726 of file dvm3_vector.h.

6.15.1.3 dvm3_Vector::dvm3_Vector (dvm3_Vector const & other) [inline,
inherited]

Copy constructor.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.16 Dot, Vector products 43

Parameters:

other vector to copy

Definition at line 697 of file dvm3_vector.h.

6.15.1.4 dvm3_Vector::dvm3_Vector (double x, double y, double 7z)
[inline, inherited]

Construct dvm3_ Vector from 3 doubles.

Parameters:

X X component
y y component

Z Z component

Definition at line 691 of file dvm3_vector.h.

6.15.1.5 dvm3_Vector::dvin3_Vector () [inline, inherited]
Default constructor; NO INITIALIZATION IS APPLIED.

Definition at line 687 of file dvm3_vector.h.

6.15.1.6 dvm3_Vector::~dvim3_Vector () [inline, inherited]
Do-nothing destructor.

Definition at line 683 of file dvm3_vector.h.

6.16 Dot, Vector products

¢ double dvm3_ Vector::dot (dvm3_Vector const &v1, dvm3_Vector const &v2)
e void dvm3_Vector::cross (dvm3_Vector &result, dvm3_Vector const &vl,
dvm3_Vector const &v2)

e void dvm3_Vector::dyad_product (dvm3_Matrix &, const dvm3_Vector &,
const dvm3_Vector &)

e void dvm3_Vector::mvmult (dvm3_Vector &, const dvm3_Matrix &, const
dvm3_Vector &)

e void dvm3_Vector::mtvmult (dvm3_Vector &, const dvm3_Matrix &, const
dvm3_Vector &)

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.16 Dot, Vector products 44

Functions

e double dvm3_Vector::dot (dvm3_Vector const &v) const
e void dvm3_Vector::cross (dvm3_Vector const &v1, dvm3_Vector const &v2)

6.16.1 Function Documentation

6.16.1.1 void dvim3_Vector::cross (dvm3_Vector const & vI, dvin3_Vector const
& v2) [inherited]

Cross product

Set this dvm3_Vector to be the vector cross product of vl and v2.

Parameters:

vl 1st vector

v2 2nd vector

6.16.1.2 double dvm3_Vector::dot (dvmm3_Vector const & v) const
[inherited]

Dot product

Returns:

dot product (scalar product) of v with this dvm3_Vector.

Parameters:

v other vector

6.16.2 Friends
6.16.2.1 void cross (dvm3_Vector & result, dvm3_Vector const & vI, dvm3_-
Vector const & v2) [friend, inherited]

Cross product

Returns:

cross product of vl and v2.

Parameters:

vl 1st vector

v2 2nd vector

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.16 Dot, Vector products 45

6.16.2.2 double dot (dvim3_Vector const & vIi, dvm3_Vector const & v2)
[friend, inherited]

Dot product

Returns:

dot product of v1 and v2.

Parameters:

vl 1st vector

v2 2nd vector

6.16.2.3 void dyad_product (dvm3_Matrix & result, const dvin3_Vector & vI,
const dvim3_Vector & v2) [friend, inherited]

Dyadic product

Form dyadic product (outer product) of vectors vl and v2.

For each i, j: result[i][]J] = v1[i] * Vv2[]]

Parameters:

result dyadic product
vl 1st vector

v2 2nd vector

Definition at line 1093 of file dvm3_matrix.h.

6.16.2.4 void mtvmult (dvm3_Vector & result, const dvim3_Matrix & m, const
dvm3_Vector & v) [friend, inherited]

Multiply vector by transpose of matrix

Matrix multiplication of vector v by transpose of matrix m.

result = (transpose of m) _matrix _multiply_ v.

Parameters:

result product
m matrix

Vv vector

Definition at line 1118 of file dvm3_matrix.h.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.17 Componentwise math operations 46

6.16.2.5 void mvmult (dvm3_Vector & result, const dvim3_Matrix & m, const

dvim3_Vector & v) [friend,

Multiply vector by matrix

inherited]

Matrix multiplication of vector v by matrix m.

result = m _matrix_multiply_ v.

Parameters:

result product
m matrix

Vv vector

Definition at line 1110 of file dvm3

_matrix.h.

6.17 Componentwise math operations

Friends

e dvm3_Vector dvm3_Vector::
const &v2)

e dvm3_Vector dvm3_Vector::
const &v2)

e dvm3_Vector dvm3_Vector::
const &v2)

¢ dvm3_Vector dvin3_Vector:
const &v2)

e dvm3_Vector dvm3_Vector:

¢ dvm3_Vector dvm3_Vector::

¢ dvm3_Vector dvm3_Vector::

e dvm3_Vector dvm3_Vector::

¢ dvm3_Vector dvm3_Vector::

¢ dvm3_Vector dvm3_Vector::

e dvm3_Vector dvm3_Vector::

¢ dvm3_Vector dvm3_Vector::

6.17.1 Friends

operator+ (dvm3_Vector const &v1, dvm3_Vector
operator- (dvm3_Vector const &v1, dvm3_Vector
operator* (dvm3_Vector const &v1, dvm3_Vector

:operator/ (dvm3_Vector const &v1, dvm3_Vector

:operator+ (double r, dvm3_Vector const &v)

operator- (double r, dvm3_Vector const &v)
operatorx (double r, dvm3_Vector const &v)
operator/ (double r, dvm3_Vector const &v)
operator+ (dvm3_Vector const &v, double r)
operator- (dvm3_Vector const &v, double r)
operator* (dvm3_Vector const &v, double r)
operator/ (dvm3_Vector const &v, double r)

6.17.1.1 dvm3_Vector operatorx (dvmm3_Vector const & v, double r)

[friend, inherited]

component-wise product: v[i] x r

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.17 Componentwise math operations 47

Returns:

component-wise product: v[i] * r

Parameters:

v vector

r scalar

6.17.1.2 dvm3_Vector operatorx (double r, dvm3_Vector const & v)
[friend, inherited]

component-wise product: 1 * v[i]

Returns:

component-wise product: 1 * v[i]

Parameters:

r scalar

v vector

6.17.1.3 dvm3_Vector operatorx (dvim3_Vector const & vI, dvm3_Vector const
& v2) [friend, inherited]

component-wise product of v1 and v2.

Returns:

component-wise product of vl and v2

Parameters:

vl 1st vector

v2 2nd vector

6.17.1.4 dvm3_Vector operator+ (dvm3_Vector const & v, double r)
[friend, inherited]

component-wise sum: v[i] +r

Returns:

component-wise sum: V[i] +r

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.17 Componentwise math operations 48

Parameters:

v vector

r scalar

6.17.1.5 dvm3_Vector operator+ (double r, dvm3_Vector const & v)
[friend, inherited]

component-wise sum: 1 + V[i]

Returns:

component-wise sum: 1 + V[i]

Parameters:

r scalar

v vector

6.17.1.6 dvm3_Vector operator+ (dvin3_Vector const & vI, dvim3_Vector const
& v2) [friend, inherited]

component-wise sum of vl and v2.

Returns:

component-wise sum of vl and v2

Parameters:

vl 1st vector

v2 2nd vector

6.17.1.7 dvm3_Vector operator- (dvn3_Vector const & v, double r)
[friend, inherited]

component-wise difference: v[i] - r

Returns:

component-wise difference: v[i] - r

Parameters:

v vector

r scalar

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

6.17 Componentwise math operations

49

6.17.1.8 dvm3_Vector operator- (double r, dvm3_Vector const & v)

[friend, inherited]

component-wise difference: r - v[i]

Returns:

component-wise difference: r - v[i]

Parameters:

r scalar

v vector

6.17.1.9 dvm3_Vector operator- (dvm3_Vector const & vI, dvm3_Vector const

& v2) [friend, inherited]

component-wise difference of vl and v2.

Returns:

component-wise difference of vl and v2

Parameters:

vl 1st vector

v2 2nd vector

6.17.1.10 dvm3_Vector operator/ (dvm3_Vector const & v,
[friend, inherited]

component-wise division: v[i] / r

Returns:

component-wise division: v[i] /r

Parameters:

Vv vector

r scalar

double r)

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

7 Directory Documentation

50

6.17.1.11 dvm3_Vector operator/ (double r,
[friend, inherited]

component-wise division: r/ v[i]

Returns:

component-wise division: r/ v[i]

Parameters:

r scalar

v vector

7 Directory Documentation

7.1 dvm3/ Directory Reference

dvm3

Files

file dvim3.h

* file dvim3_matrix.cc
* file dvim3_matrix.h
¢ file dvm3_rotmat.cc
¢ file dvm3_rotmat.h
¢ file dvim3_vector.h

8 Class Documentation

8.1 dvm3_Matrix Class Reference

#include <dvm3/dvm3_matrix.h>

dvm3_Vector const & v)

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.1 dvm3_Matrix Class Reference 51

Inheritance diagram for dvm3_Matrix:

dvm3_Matrix

|

dvm3_RotMat

Collaboration diagram for dvm3_Matrix:

dvm3_MPOD

+

data_

|
|
dvm3_Matrix

Public Member Functions

¢ ~dvm3_Matrix ()

e dvm3_Matrix ()

e dvm3_Matrix (dvm3_Matrix const &m)

e dvm3_Matrix (dvm3_Vector const &x, dvm3_Vector const &y, dvm3_Vector
const &z)

e dvm3_Matrix (double const x[], double const y[], double const z[])

¢ void init_by_row (dvm3_Vector const &v1, dvm3_Vector const &v2, dvm3_-
Vector const &v3)

¢ void init_by_row (double const v1[], double const v2[], double const v3[])

¢ void init_by_col (dvm3_Vector const &v1, dvm3_Vector const &v2, dvm3_-
Vector const &v3)

¢ void init_by_col (double const v1[], double const v2[], double const v3[])

* double const * operator[] (int i) const

¢ double * operator][] (int i)

¢ double operator() (int i, int j) const

¢ double & operator() (int i, int j)

e dvm3_Matrix & operator= (dvm3_Matrix const &rhs)

* dvm3_Matrix & operator= (double rhs)

e dvm3_Matrix & operator+= (dvm3_Matrix const &rhs)

e dvm3_Matrix & operator-= (dvm3_Matrix const &rhs)

e dvm3_Matrix & operatorx= (dvm3_Matrix const &rhs)

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.1 dvm3_Matrix Class Reference 52

e dvm3_Matrix & operator/= (dvm3_Matrix const &rhs)

* dvm3_Matrix & operator+= (double rhs)

* dvm3_Matrix & operator-= (double rhs)

e dvm3_Matrix & operatorx= (double rhs)

e dvm3_Matrix & operator/= (double rhs)

e dvm3_Matrix & operator+ ()

e dvm3_Matrix & operator- ()

* void inject_row (int whichrow, dvm3_Vector const &new_row)

* void inject_row (int whichrow, double const new_row][])

* void inject_col (int whichcol, dvm3_Vector const &col)

* void inject_col (int whichcol, double const col[])

¢ void extract_row (int whichrow, dvm3_Vector &row) const

¢ void extract_row (int whichrow, double row[]) const

¢ void extract_col (int whichcol, dvm3_Vector &col) const

¢ void extract_col (int whichcol, double *col) const

* void dyad_product (dvm3_Vector const &v1, dvm3_Vector const &v2)

* void dyad_product (double const v1[], double const v2[])

¢ void lincomb (double cl, dvm3_Matrix const &ml, double c2, dvm3_Matrix
const &m?2)

e void mvmult (dvm3_Vector &result, dvm3_Vector const &v) const

¢ void mvmult (double result[], double const v[]) const

¢ void mtvmult (dvm3_Vector &result, dvm3_Vector const &v) const

¢ void mtvmult (double result[], double const v[]) const

e void mmult (dvm3_Matrix const &m1, dvm3_Matrix const &m?2)

e std::ostream & print_on (std::ostream &os, char const pre[]=""
post[]="") const

¢ void cprint_on (FILE xos, char const prefix[]=

, char const

" _nn

, char const postfix[]="")

¢ void orthonormalize ()

Protected Types

* enum ENelts_ { ENelts =9 }
e enum ERowOffset_ { ERow0 = 0, ERowl = 3, ERow2 =6 }
e enum EColStride_ { EColStride =3 }

Protected Attributes

e dvm3_MPOD data_

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.1 dvm3_Matrix Class Reference 53

Friends

e std::ostream & operator<< (std::ostream &os, dvm3_Matrix const &)

* void dyad_product (dvm3_Matrix &result, dvm3_Vector const &v1, dvm3_-
Vector const &v2)
¢ void dyad_product (dvm3_Matrix &result, double const v1[], double const

v2[])

¢ void lincomb (dvm3_Matrix &result, double c1, dvm3_Matrix const &ml,
double ¢c2, dvm3_Matrix const &m2)

¢ void mvmult (dvm3_Vector &result, dvm3_Matrix const &m, dvm3_Vector
const &v)

¢ void mvmult (double result[], dvm3_Matrix const &m, double const v[])

¢ void mtvmult (dvm3_Vector &result, dvm3_Matrix const &m, dvm3_Vector
const &v)

¢ void mtvmult (double result[], dvm3_Matrix const &m, double const v[])

¢ void mmult (dvm3_Matrix &result, dvm3_Matrix const &m1l, dvm3_Matrix
const &m?2)

e dvm3_Matrix operator+ (dvm3_Matrix const &ml, dvm3_Matrix const
&m?2)

e dvm3_Matrix operator- (dvm3_Matrix const &m1, dvm3_Matrix const &m?2)

e dvm3_Matrix operatorsx (dvm3_Matrix const &ml, dvm3_Matrix const

&m?2)

dvm3_Matrix operator/ (dvm3_Matrix const &m1, dvm3_Matrix const &m?2)

dvm3_Matrix operator+ (double d, dvm3_Matrix const &m)

dvm3_Matrix operator- (double d, dvm3_Matrix const &m)

dvm3_Matrix operators (double d, dvm3_Matrix const &m)

dvm3_Matrix operator/ (double d, dvm3_Matrix const &m)

dvm3_Matrix operator+ (dvm3_Matrix const &m, double d)

dvm3_Matrix operator- (dvm3_Matrix const &m, double d)

dvm3_Matrix operatorx (dvm3_Matrix const &m, double d)

dvm3_Matrix operator/ (dvm3_Matrix const &m, double d)

8.1.1 Detailed Description

A class representing 3x3 matrix of doubles with common numerical operations * de-
fined. The dvm3_Matrix class is a simple class to handle common * numerical opera-
tions on 3-matrices of doubles. Unless otherwise noted, * the operations are component
by component operations, * e.g.,

vl *» v2 = { v1[0] * v2[0], v1[1] % v2[1], v1[2] = v2[2] }

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.2 dvm3_RotMat Class Reference 54

This is intended as a small component which can be inexpensively created on the stack;
the constructors and destructor do not make use of dynamic allocation. The dvm3_-
Matrix default constructor does not initialize the memory.

dvm3_Matrix works on any of these representations of 3-vectors:

» dvm3_Vector: a class encapsulating a 3-vector of doubles with associated math-
ematical operations

* doublex: a c-style array holding (at least) 3 doubles.

NOTE: although dvm3_Matrix works with either of the above two vector types, the
SAME vector type must be used for ALL occurrences within any given method call.

Definition at line 104 of file dvm3_matrix.h.

The documentation for this class was generated from the following files:

e dvm3_matrix.h
¢ dvm3_matrix.cc

8.2 dvm3 RotMat Class Reference

#include <dvm3/dvm3_rotmat.h>

Inheritance diagram for dvm3_RotMat:

dvm3_Matrix

T

dvm3_RotMat

Collaboration diagram for dvm3_RotMat:

dvm3_MPOD

+

Idata_
]

dvm3_Matrix

|

dvm3_RotMat

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.2 dvm3_RotMat Class Reference 55

Public Types

e enum EEulerAngleType { EOSAC_az_el_clock = 0, EX_convention = 1,
EY_convention =2 }
* enum EInputVecPair {

E XY.E YZ.E ZX,E_XZ,
E_ZY,E_YX}

Public Member Functions

¢ ~dvm3_RotMat ()

e dvm3_RotMat ()

¢ dvm3_RotMat (dvm3_RotMat const &m)

* dvm3_RotMat (dvm3_Vector const &x, dvm3_Vector const &y, dvm3_Vector
const &z, double const tol=100.0 *DBL_EPSILON)

* dvm3_RotMat (double const x[], double const y[], double const z[], double
const tol=100.0 *xDBL_EPSILON)

¢ dvm3_RotMat (double angle0, double anglel, double angle2, EEulerAngleType
angle_type=EOSAC_az_el_clock)

* dvm3_RotMat (dvm3_Vector const &v0, dvm3_Vector const &v1, ElnputVec-
Pair type)

* dvm3_RotMat (double const vO[], double const v1[], EInputVecPair type)

e void init (double angle0, double anglel, double angle2, EEulerAngleType
angle_type=EOSAC_az_el_clock)

* void init (dvm3_Vector const &v0, dvm3_Vector const &v1, ElnputVecPair
type)

* void init (double const vO[], double const v1[], EInputVecPair type)

¢ dvm3_RotMat & operator= (dvm3_RotMat const &rhs)

* void invert ()

e int is_rotation_matrix (double const tol=100.0 *DBL_EPSILON) const

8.2.1 Detailed Description

A class representing 3x3 rotation matrix of doubles. dvm3_RotMat is a derived class
of dvm3_Matrix. Constructors and initialization methods are added to construct or-
thogonal 3x3 matrices.

This is intended as a small component which can be inexpensively created on the stack;
the constructors and destructor do not make use of dynamic allocation. The dvm3_-
RotMat default constructor initializes the matrix to a unit matrix (i.e., no rotation).

Suppose we are considering two frames, an initial standard frame, S, and a body frame,
B.Leteg;, i=0, 1, 2, denote the i’th basis vector for frame S, and eg ;,i=0, 1, 2, the
corresponding basis vectors in frame B. The rotation matrix from S to B can be written
as

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.2 dvm3_RotMat Class Reference 56

Rij=eB,i-¢es
Note that this has two particularly simple interpretations:

1. the column vectors of R consist of the direction cosines of the eg vectors in the
ep frame

2. the row vectors consist of the direction cosines of the eg vectors in the eq frame.

Definition at line 69 of file dvm3_rotmat.h.

8.2.2 Constructor & Destructor Documentation

8.2.2.1 dvm3_RotMat::~dvm3_RotMat () [inline]
Do-nothing destructor

Definition at line 527 of file dvm3_rotmat.h.

8.2.2.2 dvm3_RotMat::dvin3_RotMat ()
Default constructor; a unit matrix is generated by default.

Definition at line 44 of file dvm3_rotmat.cc.

8.2.2.3 dvm3_RotMat::dvin3_RotMat (dvim3_RotMat const & m) [inline]

Copy constructor.

Parameters:

m rotation matrix to copy

Definition at line 532 of file dvm3_rotmat.h.

8.2.2.4 dvm3_RotMat::dvin3_RotMat (dvim3_Vector const & x, dvm3_Vector
const & y, dvim3_Vector const & z, double const fo/=100.0 * DBL_EPSILON)

Constructor.

Each row is a coordinate unit vector. The vectors are assumed to be orthonormal; an
error is issued and exit(1) is called if the vectors are not orthonormal to within tolerance
tol. If the vectors are indeed orthonormal within tolerance tol, they are further explicitly
orthonormalized by a series of cross products and scalings; consequently the matrix
rows may differ slightly from the input x, y, z dvm3_Vector’s.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.2 dvm3_RotMat Class Reference 57

Parameters:

X X IOW
y yrow
Z ZTOW

tol tolerance for orthonormality

Definition at line 53 of file dvm3_rotmat.cc.

References is_rotation_matrix(), and dvm3_Matrix::orthonormalize().

8.2.2.5 dvm3_RotMat::dvm3_RotMat (double const x[], double const y[], dou-
ble const z[], double constfol =100.0 * DBL_EPSILON)

Constructor.

Each row is a coordinate unit vector. The vectors are assumed to be orthonormal; an
error is issued and exit(1) is called if the vectors are not orthonormal to within tolerance
tol. If the vectors are indeed orthonormal within tolerance tol, they are further explicitly
orthonormalized by a series of cross products and scalings; consequently the matrix
rows may differ slightly from the input x, y, z dvm3_Vector’s.

Parameters:
X X Iow
y y row
Z ZTOW

tol tolerance for orthonormality

Definition at line 76 of file dvm3_rotmat.cc.

References is_rotation_matrix(), and dvm3_Matrix::orthonormalize().

8.2.2.6 dvm3_RotMat::dvin3_RotMat (double angle0, double anglel, double
angle2, dvm3_RotMat::EEulerAngleType angle_type = EOSAC_az_el_clock)

Constructor.

Construct a rotation matrix based on 3 Euler angles (in radians). This rotation ma-
trix describes the rotation from an external system coordinate fo a coordinate system
attached to a rigid body.

A body initially has its coordinate system aligned with the standard external coordi-
nates. The body is rotated to its final orientation by performing a series of rotations,
each rotation about a current body axis. That is

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.2 dvm3_RotMat Class Reference 58

* rotation by angle0 about axis a, followed by
* rotation by anglel about axis b, followed by

* rotation by angle2 about axis c

The specification of angle(, anglel, and angle2 and axes a, b, and ¢ are determined by
the enumerated constant angle_type.

Because we want a transformation from the space
coordinates to the body coordinates, the rotation matrix
components actually correspond to the inverse of the
transformation which generated the rigid body position,
i.e.,

« rotation by —-angle2 about axis c, followed by
« rotation by —-anglel about axis b, followed by

« rotation by —-angle0 about axis a

Because of rotation matrices are orthogonal, the inverse
motion (from the body-centered coordinate system back to
the standard coordinate system) is simply the transpose
of the rotation matrix constructed by this constructor.

Parameters:
anglel 1st Euler angle
anglel 2nd Euler angle

angle2 3rd Euler angle
angle_type type of Euler angles to use

Definition at line 111 of file dvm3_rotmat.cc.

References init().

8.2.2.7 dvm3_RotMat::dvim3_RotMat (dvm3_Vector const & v0, dvm3_Vector
const & vI, ElnputVecPair type)

Constructor.

Construct a rotation matrix based on two (non-colinear) vectors. The rotation matrix is
constructed by sequential application cross products.

If type == E_XY, the vectors passed in are assumed to lie in the x-y plane with v0 an x-
like vector and v1 a y-like vector; e_x is v0. e_z is constructed from e_x cross vl. e_y
is constructed from e_z cross e_x. The three vectors e_x, e_y, and e_z are normalized.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.2 dvm3_RotMat Class Reference 59

If type == E_YZ, the vectors passed in are assumed to lie in the y-z plane with v0 an y-
like vector and v1 a z-like vector; e_y is v0. e_x is constructed from e_y cross vl. e_z
is constructed from e_x cross e_y. The three vectors e_x, e_y, and e_z are normalized.

If type == E_ZX, the vectors passed in are assumed to lie in the x-z plane with vO an z-
like vector and v1 a x-like vector; e_z is v0. e_y is constructed from e_z cross v1. e_x
is constructed from e_y cross e_z. The three vectors e_x, e_y, and e_z are normalized.

If type == E_YX, the vectors passed in are assumed to lie in the x-y plane with v0 a y-
like vector and v1 an x-like vector; e_y is v0. e_z is constructed from v1 cross e_y. e_x
is constructed from e_y cross e_z. The three vectors e_x, e_y, and e_z are normalized.

If type == E_ZY, the vectors passed in are assumed to lie in the y-z plane with vO a z-
like vector and v1 a y-like vector; e_z is v0. e_x is constructed from v1 cross e_z. e_y
is constructed from e_z cross e_x. The three vectors e_x, e_y, and e_z are normalized.

If type == E_XZ, the vectors passed in are assumed to lie in the x-z plane with v0 an x-
like vector and v1 a z-like vector; e_x is v0. e_y is constructed from v1 cross e_x. e_z
is constructed from e_x cross e_y. The three vectors e_x, e_y, and e_z are normalized.

Parameters:
v0 1st vector
vl 2nd vector

type type of input vectors

Definition at line 160 of file dvm3_rotmat.cc.

References init().

8.2.2.8 dvm3_RotMat::dvim3_RotMat (double const vO[], double const vI[],
ElInputVecPair type)

Constructor.

Construct a rotation matrix based on two (non-colinear) vectors. The rotation matrix is
constructed by sequential application cross products.

If type == E_XY, the vectors passed in are assumed to lie in the x-y plane with v0 an x-
like vector and v1 a y-like vector; e_x is v0. e_z is constructed from e_x cross vl. e_y
is constructed from e_z cross e_x. The three vectors e_x, e_y, and e_z are normalized.

If type == E_YZ, the vectors passed in are assumed to lie in the y-z plane with v0 an y-
like vector and v1 a z-like vector; e_y is v0. e_x is constructed from e_y cross vl. e_z
is constructed from e_x cross e_y. The three vectors e_x, e_y, and e_z are normalized.

If type == E_ZX, the vectors passed in are assumed to lie in the x-z plane with vO an z-
like vector and v1 a x-like vector; e_z is v0. e_y is constructed from e_z cross v1. e_x
is constructed from e_y cross e_z. The three vectors e_x, e_y, and e_z are normalized.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.2 dvm3_RotMat Class Reference 60

If type == E_YX, the vectors passed in are assumed to lie in the x-y plane with v0 a y-
like vector and v1 an x-like vector; e_y is v0. e_z is constructed from v1 cross e_y. e_x
is constructed from e_y cross e_z. The three vectors e_x, e_y, and e_z are normalized.

If type == E_ZY, the vectors passed in are assumed to lie in the y-z plane with v0 a z-
like vector and v1 a y-like vector; e_z is v0. e_x is constructed from v1 cross e_z. e_y
is constructed from e_z cross e_x. The three vectors e_x, e_y, and e_z are normalized.

If type == E_XZ, the vectors passed in are assumed to lie in the x-z plane with v0 an x-
like vector and v1 a z-like vector; e_x is v0. e_y is constructed from v1 cross e_x. e_z
is constructed from e_x cross e_y. The three vectors e_x, e_y, and e_z are normalized.

Parameters:

v0 1st vector
vl 2nd vector

type type of input vectors

Definition at line 211 of file dvm3_rotmat.cc.

References init().

8.2.3 Member Function Documentation

8.2.3.1 void dvm3_RotMat::init (double angle0, double anglel, double angle2,
dvm3_RotMat::EEulerAngleType angle_type = EOSAC_az_el_clock)

Initialize a rotation matrix based on 3 Euler angles (in radians). This rotation matrix de-
scribes the rotation from an external system coordinate fo a coordinate system attached
to a rigid body.

A body initially has its coordinate system aligned with the standard external coordi-
nates. The body is rotated to its final orientation by performing a series of rotations,
each rotation about a current body axis. That is

* rotation by angle0 about axis a, followed by
* rotation by anglel about axis b, followed by
* rotation by angle2 about axis c
The specification of angle0, anglel, and angle2 and axes a, b, and c are determined by

the enumerated constant angle_type.

Because we want a transformation from the space
coordinates to the body coordinates, the rotation matrix
components actually correspond to the inverse of the
transformation which generated the rigid body position,
i.e.,

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.2 dvm3_RotMat Class Reference 61

« rotation by —angle2 about axis c, followed by
« rotation by —-anglel about axis b, followed by

- rotation by —-angle0 about axis a

Because of rotation matrices are orthogonal, the inverse
motion (from the body-centered coordinate system back to
the standard coordinate system) is simply the transpose
of the rotation matrix constructed by this constructor.

Parameters:

anglel 1st Euler angle
anglel 2nd Euler angle
angle2 3rd Euler angle
angle_type type of Euler angles to use

Definition at line 237 of file dvm3_rotmat.cc.

Referenced by dvm3_RotMat().

8.2.3.2 void dvim3_RotMat::init (dvm3_Vector const & v0, dvm3_Vector const
& vi, ElnputVecPair type)

Initialize a rotation matrix based on two (non-colinear) vectors. The rotation matrix is
constructed by sequential application cross products.

If type == E_XY, the vectors passed in are assumed to lie in the x-y plane with v0 an x-
like vector and v1 a y-like vector; e_x is v0. e_z is constructed from e_x cross v1. e_y
is constructed from e_z cross e_x. The three vectors e_x, e_y, and e_z are normalized.

If type == E_YZ, the vectors passed in are assumed to lie in the y-z plane with v0 an y-
like vector and v1 a z-like vector; e_y is v0. e_x is constructed from e_y cross vl. e_z
is constructed from e_x cross e_y. The three vectors e_x, e_y, and e_z are normalized.

If type == E_ZX, the vectors passed in are assumed to lie in the x-z plane with vO an z-
like vector and v1 a x-like vector; e_z is v0. e_y is constructed from e_z cross v1. e_x
is constructed from e_y cross e_z. The three vectors e_x, e_y, and e_z are normalized.

If type == E_YX, the vectors passed in are assumed to lie in the x-y plane with v0 a y-
like vector and v1 an x-like vector; e_y is v0. e_z is constructed from v1 cross e_y. e_x
is constructed from e_y cross e_z. The three vectors e_x, e_y, and e_z are normalized.

If type == E_ZY, the vectors passed in are assumed to lie in the y-z plane with v0 a z-
like vector and v1 a y-like vector; e_z is v0. e_x is constructed from v1 cross e_z. e_y
is constructed from e_z cross e_x. The three vectors e_x, e_y, and e_z are normalized.

If type == E_XZ, the vectors passed in are assumed to lie in the x-z plane with v0 an x-
like vector and v1 a z-like vector; e_x is v0. e_y is constructed from v1 cross e_x. e_z
is constructed from e_x cross e_y. The three vectors e_x, e_y, and e_z are normalized.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.2 dvm3_RotMat Class Reference 62

Parameters:

v0 1st vector
vl 2nd vector

type type of input vectors

Definition at line 384 of file dvm3_rotmat.cc.

References dvm3_Vector::data_.

8.2.3.3 void dvin3_RotMat::init (double const v0[], double const vI[], Eln-
putVecPair type)

Initialize a rotation matrix based on two (non-colinear) vectors. The rotation matrix is
constructed by sequential application cross products.

If type == E_XY, the vectors passed in are assumed to lie in the x-y plane with v0 an x-
like vector and v1 a y-like vector; e_x is v0. e_z is constructed from e_x cross vl. e_y
is constructed from e_z cross e_x. The three vectors e_x, e_y, and e_z are normalized.

If type == E_YZ, the vectors passed in are assumed to lie in the y-z plane with v0 an y-
like vector and v1 a z-like vector; e_y is v0. e_x is constructed from e_y cross vl. e_z
is constructed from e_x cross e_y. The three vectors e_x, e_y, and e_z are normalized.

If type == E_ZX, the vectors passed in are assumed to lie in the x-z plane with v0 an z-
like vector and v1 a x-like vector; e_z is v0. e_y is constructed from e_z cross v1. e_x
is constructed from e_y cross e_z. The three vectors e_x, e_y, and e_z are normalized.

If type == E_YX, the vectors passed in are assumed to lie in the x-y plane with v0 a y-
like vector and v1 an x-like vector; e_y is v0. e_z is constructed from v1 cross e_y. e_x
is constructed from e_y cross e_z. The three vectors e_x, e_y, and e_z are normalized.

If type == E_ZY, the vectors passed in are assumed to lie in the y-z plane with v0 a z-
like vector and v1 a y-like vector; e_z is v0. e_x is constructed from v1 cross e_z. e_y
is constructed from e_z cross e_x. The three vectors e_x, e_y, and e_z are normalized.

If type == E_XZ, the vectors passed in are assumed to lie in the x-z plane with v0 an x-
like vector and v1 a z-like vector; e_x is v0. e_y is constructed from v1 cross e_x. e_z
is constructed from e_x cross e_y. The three vectors e_x, e_y, and e_z are normalized.

Parameters:

v0 1st vector
vl 2nd vector

type type of input vectors

Definition at line 502 of file dvm3_rotmat.cc.

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.3 dvm3_Vector Class Reference

63

8.2.3.4 dvm3_RotMat & dvim3_RotMat::operator= (dvm3_RotMat const & rhs)

[inline]

Copy-assignment operator

Returns:

rotation matrix

Parameters:

rhs value to be assigned.

Definition at line 538 of file dvm3_rotmat.h.

References dvm3_Matrix::data_.

8.2.3.5 void dvim3_RotMat::invert ()
Invert (i.e., transpose) this rotation matrix.

Definition at line 581 of file dvm3_rotmat.cc.

8.2.3.6 int dvm3_RotMat::is_rotation_matrix (double
100.0 * DBL_EPSILON) const

Test this rotation matrix for orthonormality.

Returns:

1 if this is an orthonormal matrix, O otherwise.

Parameters:

tol tolerance for determining orthonormality

Definition at line 598 of file dvm3_rotmat.cc.

Referenced by dvm3_RotMat().

const tol =

The documentation for this class was generated from the following files:

¢ dvm3_rotmat.h
e dvm3_rotmat.cc

8.3 dvm3_ Vector Class Reference

#include <dvm3/dvm3_vector.h>

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.3 dvm3_Vector Class Reference 64

Collaboration diagram for dvm3_Vector:

dvm3_VPOD

+

Idata_
]

dvm3_Vector

Public Member Functions

¢ ~dvm3_Vector ()

e dvm3_Vector ()

e dvm3_Vector (double x, double y, double z)

e dvm3_Vector (dvm3_Vector const &other)

* void copy_from_cvec (double const *cv)

* void copy_to_cvec (double xv) const

¢ void init (double x, double y, double z)

* dvm3_Vector & operator= (dvm3_Vector const &rhs)

* dvm3_Vector & operator= (double rhs)

e dvm3_Vector & operator+= (dvm3_Vector const &rhs)

e dvm3_Vector & operator-= (dvm3_Vector const &rhs)

e dvm3_Vector & operatorx= (dvm3_Vector const &rhs)

e dvm3_Vector & operator/= (dvm3_Vector const &rhs)

* dvm3_Vector & operator+= (double rhs)

* dvm3_Vector & operator-= (double rhs)

e dvm3_Vector & operator= (double rhs)

e dvm3_Vector & operator/= (double rhs)

e dvm3_Vector & operator+ ()

e dvm3_Vector & operator- ()

¢ double const & operator][| (int i) const

¢ double & operator|[] (int i)

* double operator() (int i) const

¢ double & operator() (int i)

¢ double dot (dvm3_Vector const &v) const

¢ void cross (dvm3_Vector const &v1, dvm3_Vector const &v2)

¢ void lincomb (double c1, dvm3_Vector const &v1, double ¢2, dvm3_Vector
const &v2)

e std::ostream & print_on (std::ostream &os, char const pre|]
post[]="") const

* void cprint_on (FILE xof, char const prefix[]=

_nn

, char const

nn _nn

, char const postfix[]="")

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.3 dvm3_Vector Class Reference 65

¢ double unitize ()
e int is_unit_vector (double const tol=100.0 *DBL_EPSILON) const
e int is_orthogonal_to (dvm3_Vector const &other, double const tol=100.0

+*DBL_EPSILON) const

Friends

¢ class dvm3_Matrix

¢ class dvm3_RotMat

* dvm3_Vector operator+ (dvm3_Vector const &v1, dvm3_Vector const &v2)
¢ dvm3_Vector operator- (dvm3_Vector const &v1, dvm3_Vector const &v2)

* dvm3_Vector operator* (dvm3_Vector const &v1, dvm3_Vector const &v2)
¢ dvm3_Vector operator/ (dvm3_Vector const &v1, dvm3_Vector const &v2)
* dvm3_Vector operator+ (double r, dvm3_Vector const &v)

e dvm3_Vector operator- (double r, dvm3_Vector const &v)

* dvm3_Vector operatorx (double r, dvm3_Vector const &v)

* dvm3_Vector operator/ (double r, dvm3_Vector const &v)

e dvm3_Vector operator+ (dvm3_Vector const &v, double r)

* dvm3_Vector operator- (dvm3_Vector const &v, double r)

¢ dvm3_Vector operatorx (dvm3_Vector const &v, double r)

* dvm3_Vector operator/ (dvm3_Vector const &v, double r)

¢ std::ostream & operator<< (std::ostream &os, dvm3_Vector const &)

¢ double unitize (dvm3_Vector &vu, dvm3_Vector const &vi)

¢ double dot (dvm3_Vector const &v1, dvm3_Vector const &v2)
e void cross (dvm3_Vector &result, dvm3_Vector const &v1, dvm3_Vector
const &v2)

e void lincomb (dvm3_Vector &result, double cl1, dvm3_Vector const &vl,
double c2, dvm3_Vector const &v2)

¢ void dyad_product (dvm3_Matrix &, const dvm3_Vector &, const dvm3_-

Vector &)
¢ void mvmult (dvm3_Vector &, const dvm3_Matrix &, const dvm3_Vector &)
¢ void mtvmult (dvm3_Vector &, const dvm3_Matrix &, const dvm3_Vector

&)

8.3.1 Detailed Description

A class representing a 3-vector of doubles with common numerical operations defined.
The dvm3_Vector class is a simple class to handle common numerical operations on
3-vectors of doubles. Unless otherwise noted, the operations are component by com-
ponent, e.g.,

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.3 dvm3_Vector Class Reference 66

vl * v2 = [v1(0) *v2(0), v1(1l)xv2(1l), v1(2)x*xv2(2)]

This is intended as a small component which can be inexpensively created on the stack;
the constructors and destructor do not make use of dynamic allocation. The dvm3_-
Vector default constructor does not initialize the memory.

Note that dvm3_Vector inherits from a struct, dvm3_VPOD, which encapulates an
array of doubles. The inheritence is protected; this implementation is exposed purely
for efficiency considerations; users shall not assume that this implementation detail
will not change in future. DO NOT rely on the fact that there is an array under the
hood or on the naming of the data members within dvm3_VPOD.

Definition at line 106 of file dvm3_vector.h.

8.3.2 Member Function Documentation

8.3.2.1 double dvim3_Vector::unitize ()

normalize this dvm3_Vector; return original length vector length.

Returns:

original length of this vector

8.3.2.2 int dvm3_Vector::is_unit_vector (double const tol = 100.0 *DBL_-
EPSILON) const

normalize this dvm3_Vector; return original length vector length.

Returns:

1 if vector is unit vector within tolerance tol.

8.3.2.3 int dvm3_Vector::is_orthogonal_to (dvim3_Vector const & other, double
constfol =100.0 *DBL_EPSILON) const

Test whether this vector and the other vector are orthogonal within tolerance tol.

Returns:

1 if this and other are orthogonal within tolerance tol.

Parameters:

tol tolerance for determining orthogonality

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

8.3 dvm3_Vector Class Reference 67

8.3.3 Friends And Related Function Documentation

8.3.3.1 double unitize (dvim3_Vector & vu, dvm3_Vector const & vi)
[friend]

Normalize a vector

Returns:

original length of vi.

Parameters:
vu normalized version of vi

vi vector
The documentation for this class was generated from the following file:

¢ dvm3_vector.h

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

Index

~dvm3_Matrix
dtor_ctors_matrix, 5

~dvm3_RotMat
dvm3_RotMat, 56

~dvm3_Vector
dtor_ctors_vector, 43

Accessors, 8
assign
operatorx, 17
operatorx=, 11, 12
operator+, 17, 18
operator+=, 12, 13
operator-, 18, 19
operator-=, 13, 14
operator/, 19, 20
operator/=, 14, 15
operator=, 15, 16
Assignment, op= operators, 10
ators
operator(), 8, 9

Componentwise math operations, 46
copy_from_cvec

dtor_ctors_vector, 42
copy_to_cvec

dtor_ctors_vector, 42
cprint_on

io, 40
Cross

prods, 43, 44

Destructor; Constructors, 4, 41

dmv3_Matrix: a 3x3 matrix of doubles
with numerical operations, 4

dmv3_RotMat: a rotation matrix of dou-
bles with numerical operations,

4

dmv3_Vector: a 3-vector of doubles with

numerical operations, 4
dot
prods, 44
Dot, Vector products, 43

dtor_ctors_matrix
~dvm3_Matrix, 5
dvm3_Matrix, 5
dtor_ctors_vector
~dvm3_Vector, 43
copy_from_cvec, 42
copy_to_cvec, 42
dvm3_Vector, 42, 43
dvm3/ Directory Reference, 50
dvm3_Matrix, 50
dtor_ctors_matrix, 5
dvm3_RotMat, 54
~dvm3_RotMat, 56
dvm3_RotMat, 56-59
dvm3_RotMat, 56-59
init, 60-62
invert, 63
is_rotation_matrix, 63
operator=, 62
dvm3_Vector, 63
dtor_ctors_vector, 42, 43
is_orthogonal_to, 66
is_unit_vector, 66
unitize, 66, 67
dyad_product
dyads, 31
prods, 44
unary, 23
dyads
dyad_product, 31

extract_col
inj_ext, 28
extract_row
inj_ext, 28, 29

I/O operations., 39

init
dvm3_RotMat, 60-62
itors, 6

init_by_col
itors, 6

init_by_row

INDEX

69

itors, 7
Initializers, 6
inj_ext

extract_col, 28

extract_row, 28, 29

inject_col, 29

inject_row, 29, 30
inject_col

inj_ext, 29
inject_row

inj_ext, 29, 30
invert

dvm3_RotMat, 63
io

cprint_on, 40

operator<<, 41

print_on, 40
is_orthogonal_to

dvm3_Vector, 66
is_rotation_matrix

dvm3_RotMat, 63
iS_unit_vector

dvm3_Vector, 66
itors

init, 6

init_by_col, 6

init_by_row, 7

lincomb
lincomb, 33, 34
mtvmult, 34
mvmult, 35
Linear combination, 32

mathops
operators, 46, 47
operator+, 47, 48
operator-, 48, 49
operator/, 49
matmat
mmult, 38, 39
Matrix-Matrix operations, 38
Matrix-Vector operations, 36
matvec
mtvmult, 36
mvmult, 37

mmult
matmat, 38, 39

mtvmult
lincomb, 34
matvec, 36
prods, 45
unary, 23

mvmult
lincomb, 35
matvec, 37
prods, 45
unary, 24

operator<<<
io, 41
operators
assign, 17
mathops, 46, 47
unary, 24, 25
operators=
assign, 11, 12
operator()
ators, 8, 9
operator+
assign, 17, 18
mathops, 47, 48
unary, 22, 25
operator+=
assign, 12, 13
operator-
assign, 18, 19
mathops, 48, 49
unary, 22, 25, 26

operator-=

assign, 13, 14
operator/

assign, 19, 20

mathops, 49

unary, 26, 27
operator/=

assign, 14, 15
operator=

assign, 15, 16

dvm3_RotMat, 62
orthonormalize

unary, 22

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

INDEX

70

print_on
io, 40

prods
cross, 43, 44
dot, 44
dyad_product, 44
mtvmult, 45
mvmult, 45

Row/Column inject/extract, 27

unary
dyad_product, 23
mtvmult, 23
mvmult, 24
operatorx, 24, 25
operator+, 22, 25
operator-, 22, 25, 26
operator/, 26, 27
orthonormalize, 22
Unary operators, 21
unitize
dvm3_ Vector, 66, 67

Vector-vector dyadic product, 30

Generated on Tue Dec 2 15:44:46 2008 for dvim3 by Doxygen

	The dvm3 C++ template Library
	Copyright
	Overview

	Module Index
	Modules

	Directory Hierarchy
	Directories

	Class Index
	Class Hierarchy

	Class Index
	Class List

	Module Documentation
	dmv3_Vector: a 3-vector of doubles with numerical operations
	dmv3_Matrix: a 3x3 matrix of doubles with numerical operations
	dmv3_RotMat: a rotation matrix of doubles with numerical operations
	Destructor; Constructors
	Function Documentation

	Initializers
	Function Documentation

	Accessors
	Function Documentation

	Assignment, op= operators
	Function Documentation
	Friends

	Unary operators
	Function Documentation
	Friends

	Row/Column inject/extract
	Function Documentation

	Vector-vector dyadic product
	Function Documentation
	Friends

	Linear combination
	Function Documentation
	Friends

	Matrix-Vector operations
	Function Documentation
	Friends

	Matrix-Matrix operations
	Function Documentation
	Friends

	I/O operations.
	Function Documentation
	Friends

	Destructor; Constructors
	Function Documentation

	Dot, Vector products
	Function Documentation
	Friends

	Componentwise math operations
	Friends

	Directory Documentation
	dvm3/ Directory Reference

	Class Documentation
	dvm3_Matrix Class Reference
	Detailed Description

	dvm3_RotMat Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	dvm3_Vector Class Reference
	Detailed Description
	Member Function Documentation
	Friends And Related Function Documentation

