![]() |
dvm3_Vector& dvm3_Vector::operator+ | ( | ) | [inherited] |
Do-nothing unary +; provided for completeness.
dvm3_Matrix & dvm3_Matrix::operator+ | ( | ) | [inline, inherited] |
Do-nothing unary +; provided for completeness.
Definition at line 1021 of file dvm3_matrix.h.
dvm3_Vector& dvm3_Vector::operator- | ( | ) | [inherited] |
Unary -; negates each component of this matrix
dvm3_Matrix & dvm3_Matrix::operator- | ( | ) | [inline, inherited] |
Unary -; negates each component of this matrix
Definition at line 1025 of file dvm3_matrix.h.
void dvm3_Matrix::orthonormalize | ( | ) | [inherited] |
Force the matrix to be a proper orthonormal matrix.
The y row is replaced by z cross x, and then x is replaced with y cross z. Normalize all three rows are normalized. This forms a right-handed orthonormal triple.
"Proper", in this context, means that it preserves the parity of the coordinate system, transforming right-handed coordinates into right-handed coordinates.
Definition at line 36 of file dvm3_matrix.cc.
Referenced by dvm3_RotMat::dvm3_RotMat().
void dyad_product | ( | dvm3_Matrix & | result, | |
double const | v1[], | |||
double const | v2[] | |||
) | [friend, inherited] |
Form dyadic product (outer product) of vectors v1 and v2.
For each i, j: result[i][j] = v1[i] * v2[j]
result | dyadic product | |
v1 | 1st vector | |
v2 | 2nd vector |
Definition at line 1099 of file dvm3_matrix.h.
void mtvmult | ( | double | result[], | |
dvm3_Matrix const & | m, | |||
double const | v[] | |||
) | [friend, inherited] |
Matrix multiplication of vector v by transpose of matrix m.
result = (transpose of m) _matrix_multiply_ v.
result | product | |
m | matrix | |
v | vector |
Definition at line 1122 of file dvm3_matrix.h.
void mtvmult | ( | dvm3_Vector & | result, | |
dvm3_Matrix const & | m, | |||
dvm3_Vector const & | v | |||
) | [friend, inherited] |
Matrix multiplication of vector v by transpose of matrix m.
result = (transpose of m) _matrix_multiply_ v.
result | product | |
m | matrix | |
v | vector |
Definition at line 1118 of file dvm3_matrix.h.
void mvmult | ( | double | result[], | |
dvm3_Matrix const & | m, | |||
double const | v[] | |||
) | [friend, inherited] |
Matrix multiplication of vector v by matrix m.
result = m _matrix_multiply_ v.
result | product | |
m | matrix | |
v | vector |
Definition at line 1114 of file dvm3_matrix.h.
dvm3_Matrix operator* | ( | dvm3_Matrix const & | m, | |
double | d | |||
) | [friend, inherited] |
Set each component to m[i][j] * d.
m | a matrix | |
d | a double |
dvm3_Matrix operator* | ( | double | d, | |
dvm3_Matrix const & | m | |||
) | [friend, inherited] |
Set each component to d * m[i][j].
d | a double | |
m | a matrix |
dvm3_Matrix operator* | ( | dvm3_Matrix const & | m1, | |
dvm3_Matrix const & | m2 | |||
) | [friend, inherited] |
Component-wise product of m1 and m2.
m1 | 1st matrix | |
m2 | 2nd matrix |
dvm3_Matrix operator+ | ( | dvm3_Matrix const & | m, | |
double | d | |||
) | [friend, inherited] |
Set each component to m[i][j] + d.
m | a matrix | |
d | a double |
dvm3_Matrix operator- | ( | dvm3_Matrix const & | m, | |
double | d | |||
) | [friend, inherited] |
Set each component to m[i][j] - d.
m | a matrix | |
d | a double |
dvm3_Matrix operator- | ( | double | d, | |
dvm3_Matrix const & | m | |||
) | [friend, inherited] |
Set each component to d - m[i][j].
d | a double | |
m | a matrix |
dvm3_Matrix operator- | ( | dvm3_Matrix const & | m1, | |
dvm3_Matrix const & | m2 | |||
) | [friend, inherited] |
Component-wise difference of m1 and m2.
m1 | 1st matrix | |
m2 | 2nd matrix |
dvm3_Matrix operator/ | ( | dvm3_Matrix const & | m, | |
double | d | |||
) | [friend, inherited] |
Set each component to m[i][j] / d.
m | a matrix | |
d | a double |
dvm3_Matrix operator/ | ( | double | d, | |
dvm3_Matrix const & | m | |||
) | [friend, inherited] |
Set each component to d / m[i][j].
d | a double | |
m | a matrix |
dvm3_Matrix operator/ | ( | dvm3_Matrix const & | m1, | |
dvm3_Matrix const & | m2 | |||
) | [friend, inherited] |
Component-wise division of m1 and m2.
m1 | 1st matrix | |
m2 | 2nd matrix |