
mst_envs

Page 1

NAME
mst_envs - configure MST environment

SYNOPSIS
mst_envs [options]

OPTIONS
-csh, -tcsh, -ksh, -sh

output commands compatible with the specified shell

--define|-D option=value

Define a subsystem specific option; see <L/Subsystem Options> for more information.

--env environment variable name

Only output the specified environment variable. This option may be repeated.

--envs

only output the environment variables

--path

only output the path

--prepend

add MST executables to the front of the user's path (default behavior)

--append

add MST executables to the end of the user's path

--export, --noexport

whether the MST variables will be exported; defaults to --export

--fullpath, --nofullpath

whether the output PATH will include the user's PATH; defaults to --fullpath (yes)

--ldlibrarypath, --noldlibrarypath

whether the output will include the an LD_LIBRARY_PATH at all;
 defaults to
--noldlibrarypath (no)

--pfx pfx

prefix the MST variable names with the given string.

--sysarch, --nosysarch

whether to output the system architecture variables; defaults to --sysarch (yes)

--help

print a short help message and exit.

--usage

print detailed usage instructions and exit.

mst_envs

Page 2

DESCRIPTION
mst_envs is normally used inside a shell script (most likely the
 user's shell startup script, like .cshrc or
.profile) to add the
 required entities to the user's environment to access the MST programs
 and facilities.
mst_envs is designed to be eval'd by the shell,
 e.g.

 eval `mst_envs -csh`

normally this results in the setting of various environment
 variables, including the user's path. To have the
MST variables
 treated as shell variables, use the --noexport flag.

the --sysarch flag causes variables containing architecture
 specific info to be output. these variables are
used in constructing
 paths in the MST enviroment. by outputing these variables, the user
 may make use
of them at a later point without having to run the sysarch script separately.

In general, play with the options; it'll be pretty obvious what they do.
 Just don't eval the output until you've
got what you want.

Subsystem Options
The --define option is used to provide extra options for various subsystems:

perl_version

The version of Perl to enable access to. It may take the following values:

path

Use the Perl in the current path.

default

Use the Perl pointed to by @MST_OTS_ROOT@/pkgs/perl.

version

Use the Perl found at @MST_OTS_ROOT@/pkgs/perl-version.

The MSTENVS_WRAP_perl environment variable is set if the requested Perl isn't the default one
so that
 the @MST_ROOT@/bin/perl wrapper will use that specified.

lua_version

The version of Lua to enable access to. It may take the following values:

path

Use the Lua in the current path.

default

Use the Lua found in @MST_OTS_ROOT@/system/bin/lua.

version

Use the Lua found at @MST_OTS_ROOT@/pkgs/lua-version.

SPECIAL CASES
The LD_LIBRARY_PATH variable is set up to behave a bit differently
 from the other environment
variables. Since we have chosen to avoid
 setting LD_LIBRARY_PATH in a user's environment in the
past, if it is
 not present in the user's environment mst_envs will not output an
 LD_LIBRARY_PATH. If it is
present, mst_envs with treat it much
 like it does PATH and MANPATH. Expect --append, --prepend, and
--nofullpath to work as they would for PATH.

mst_envs

Page 3

AUTHOR
Diab Jerius (djerius@cfa.harvard.edu)

M Tibbetts (mtibbetts@cfa.harvard.edu)

