mst_rdb

Edition 1.0.9, for version 1.0.9
9 February 2023

Richard J. Edgar, Diab Jerius, Terry Gaetz

Copyright (©) 2006 Smithsonian Institution

mst_rdb is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

mst_rdb is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA

Table of Contents

1 Introduction.................. 1
Appendix A Functions 3
A.1 Reading /rdb File Headers ...t 3
ALl rdbord hdr......oo 3

A2 Mapping /rdb Columnst 3
A2.1 rdbmap_cols_arst........ccouviiiiiiiiiii . 3

A2.2 rdb_map_cols_stst..... ... 6

A.3 Counting Lines in the /rdb File oL 8
A31 rdb_count........o..iiiii 8

A.4 Testing for the existence of a column with a given name 8
A4l rdblis_column. ... 8

A5 Rewinding an /rdb File..........o i 9
A5l rdb_rewind. 9

A.6 Reading Data from the /rdb File............ ..., 10
A.6.1 rdb_colread_st ... 10

A.7 Freeing Data structures.............c.oviiiiiiiiineiiieannn.. 11
A7.1 rdb_freemap ..o 11

A.7.2 rdb_free_hdr..... ... 11

1 Introduction

The mst_rdb package allows the reading of database files in /rdb format. These files consist
of optional comments beginning with pound signs (#), a header containing the field names
of the columns, and rows of ASCII data delineated by tabs. There are two data types,
strings and numeric. The mst_rdb library allows access to both types of data fields.

The reading of an /rdb table consists of the following steps:
e read the header from an already opened file; see Section A.1.1 [rdb_rd_hdr]|, page 3.

e map the header, selecting the fields you wish to read, and passing information about
the location within a structure where you wish the information to be placed. There are
two functions supplied to accomplish this task; see Section A.2.1 [rdb_map_cols_arst],
page 3, and Section A.2.2 [rdb_map_cols_stst], page 6.

e Find out how many lines there are in the datafile, if desired; see Section A.3.1
[rdb_count], page 8.

e read the data, one line at a time, and process it; see Section A.6.1 [rdb_col_read_st],
page 10.

e close the file and free allocated memory space; see Section A.7.1 [rdb_free_map],
page 11, and Section A.7.2 [rdb_free_hdr], page 11.

There are several ways in C of specifying a complex data structure, and eventually this
library will support a number of them. For now, there is one supported method for each
of the above steps. The suffixes of the function names indicate what method is being used
to specify the data structures; ar stands for array, st stands for struct, and va stands for
varargs.

It is presumed that the user wishes to select certain columns to read, and has established
an array of structs, or a single struct, into which the data are to be placed. The header
mapping routine connects the properties of this struct to those of the /rdb file, selecting
desired columns by name, and informing the software of the data type (string or numeric)
for each desired field. The user then passes the reading routine a pointer to a struct of the
agreed type, and the reading routine obtains data from a single line of the file, and places
the desired fields into the struct. If numeric, the data are put into a double in the struct.
If string, space for the string is allocated dynamically, and a pointer to this string is put into
a char * field of the struct. It is important for the user to remember to free the memory
allocated for unused strings.

When the user is done with the data structures used in reading an /rdb file, they should
be freed. Use the normal free () call on all strings returned by the column reading function,
and then call first rdb_free_map() and then rdb_free_hdr () to free the memory associated
with the column map and header data structures respectively.

Appendix A Functions

A.1 Reading /rdb File Headers
A.1.1 rdb_rd_hdr

Parse an /rdb file header prior to reading.

Synopsis
#include <mst_rdb/mst_rdb.h>

rdbHeader *rdb_rd_hdr(FILE *fin);

Parameters

FILE *fin the stream to parse

Description

Rdb_rd_hdr extracts column names from a stream connected to an rdb data file. It leaves
the file pointer set to the first line after the header. Lines preceding the header which are
empty or begin with '#’ are ignored.

Returns

This routine returns a pointer to a dynamically allocated rdbHeader structure (filled in with
appropriate values). It returns NULL if there are no header records. Upon error it prints
a message to stderr and exits. When the user is finished with these data structures, their
memory should be freed with the rdb_free_hdr() function.

Author

Diab Jerius

A.2 Mapping /rdb Columns
A.2.1 rdb_map_cols_arst

Create a map between user requested columns and those in an /rdb file. The ‘arst’ signifies
that the function is called with [1] ARrays of column names and type arguments, and [2]
expects subsequent reads to go into elements of a STructure.

Synopsis
#include <mst_rdb/mst_rdb.h>

DataColumnMap_st *rdb_map_cols_arst(
rdbHeader const *hdr,
unsigned long ncols,
char *coll[],

4 mst_rdb

RDB_Type const typel],
size_t const data_offset[]

)
Parameters

rdbHeader const *hdr
the rdb header

unsigned long ncols
the number of columns to read

char *col[]
an array of pointers to strings holding the names of the columns to
map

RDB_Type const typel[]
an array of type specifiers; allowed values are RDB_String,
RDB_Num (i.e. double)

Possible values for a RDB_Type const are as follows: RDB_String,
RDB_Num

size_t const data_offset[]
offsets into struct for data values
Description

When reading an /rdb file, the user may wish data to be returned in an order different from
that in the data file. This routine takes a set of column names and creates a map between
it and the names read from an /rdb header. The map is used by other /rdb data input

routines.

Returns

a pointer to a dynamically allocated DataColumnMap structure (filled in with appropriate
values). It prints a message to stderr and exits if a user supplied column is not found in the
/rdb hdr. When the user is finished with the data structures allocated here, their memory
should be freed with the rdb_free_map() function.

Author
Diab Jerius, Richard J. Edgar

Note

It is generally cleaner to use rdb_map_cols_stst().

Example

/* mst_rdb: test main program for mst_rdb library
9/18/95 rje */

Appendix A: Functions

#include <stdio.h>
#include <stddef.h>
#include <string.h>

#include <tracefct/tracefct.h>
#include <mst_rdb/mst_rdb.h>

int
main(int argc, char* argvl[])
{

FILE *infile;

typedef struct {
char *mirror;
double x0;
double yO0;
double z0;
double rhoO;
double p;
double k;
} Tilt;

Tilt data;
long nlines;

rdbHeader *head;
DataColumnMap_st *map;

char *fields[] = {
"XO" s
"yO" s
IIZO" s
"mirror",
"rhoO",
llpll,
llk"
};

unsigned long nfields = 7;

RDB_Type types[] = { RDB_Num, RDB_Num, RDB_Num, RDB_String,
RDB_Num, RDB_Num, RDB_Num };

size_t offsets[7];

tf_init(argv([0],0,-1);

6 mst_rdb

infile = fopen("tilt.rdb","r");

offsets[0] = offsetof(Tilt, x0);
offsets[1] = offsetof(Tilt, yO0);
offsets[2] = offsetof(Tilt, z0);
offsets[3] = offsetof(Tilt, mirror);
offsets[4] = offsetof(Tilt, rhoO);
offsets[5] = offsetof(Tilt, p);
offsets[6] = offsetof(Tilt, k);

head = rdb_rd_hdr(infile);
map = rdb_map_cols_arst(head,nfields,fields,types,offsets);

nlines = rdb_count(infile,head);
printf ("There are %lu lines in database.\n", (unsigned long) nlines);|}

while(rdb_col_read_st(infile, head, map, &data))
{
/*

*/
}
rdb_free_hdr(head) ;
fclose(infile);

return EXIT_SUCCESS;
}

A.2.2 rdb_map_cols_stst

Create a map between user requested columns and those in an /rdb file. The ‘stst’ sig-
nifies that the function is called with [1] a STructure containing column names and type
arguments, and [2] expects subsequent reads to go into elements of a STructure.

Synopsis
#include <mst_rdb/mst_rdb.h>

DataColumnMap_st *rdb_map_cols_stst(
rdbHeader const *hdr,
unsigned long ncols,
RDBFieldStInfo const fields[]

)3

Parameters

rdbHeader const *hdr
the rdb header

Appendix A: Functions 7

unsigned long ncols
the number of columns to read

RDBFieldStInfo const fields/[]
an array of RDBFieldStInfo structs containing names of the
columns to map, data types (string or numeric), and offsets into
the user-supplied target struct for each column to be read

Description

When reading an /rdb file, the user may wish data to be returned in an order different from
that in the data file. This routine takes a set of column names and creates a map between
it and the names read from an /rdb header. The map is used by other /rdb data input
routines.

The RDBFieldStInfo struct is defined in <mst_rdb.h> as follows:

typedef struct

{

char *name;
RDB_Type type;
size_t offset;

} RDBFieldStInfo

There is a macro defined in <mst_rdb.h> to aid in filling up an array of these structures;
it is called RDBentry(name, type, structid). Here is an example of how to use it:

typedef struct{

double x;

double y;

char * string
} my_rdb_struct;
RDBFieldStInfo fields[]={

RDBentry(x, RDB_Num, my_rdb_struct),
RDBentry(y, RDB_Num, my_rdb_struct),
RDBentry(string, RDB_String, my_rdb_struct),

};
#define NFIELDS (sizeof(fields) / sizeof (RDBFieldStInfo))

infile = fopen("my_database.rdb","r");
head = rdb_rd_hdr(infile);
map = rdb_map_cols_stst(head, NFIELDS, fields);

Returns

a pointer to a dynamically allocated DataColumnMap_st structure (filled in with appropri-
ate values). It prints a message to stderr and exits if a user supplied column is not found

mst_rdb

in the /rdb hdr. When the user is finished with the data structures allocated here, their

memory should be freed with the rdb_free_map() function.

Author
Diab Jerius, Richard J. Edgar

A.3 Counting Lines in the /rdb File
A.3.1 rdb_count

Grab columns of data from an rdb data file.
Synopsis
#include <mst_rdb/mst_rdb.h>
long rdb_count (
FILE *fin,
rdbHeader *hdr
)
Parameters
FILE *fin the stream to parse

rdbHeader *hdr
the rdb file description

Description

rdb_count counts the lines in an /rdb-format table file which has previously been opened,

had its header read, and had columns mapped (using functions elsewhere in this library).

On exit, the file is left ready to read the first data element.

Returns

The routine returns the number of data records in the file. If the file cannot be rewound, it

returns -1.

Author
Diab Jerius

A.4 Testing for the existence of a column with a given name

A.4.1 rdb_is_column

Check whether /rdb header includes column "name".

Synopsis
#include <mst_rdb/mst_rdb.h>

Appendix A: Functions 9

int rdb_is_column(
rdbHeader const *hdr,
char const *name

)
Parameters

rdbHeader const *hdr
the rdb file description

char const *name
header name sought

Description

rdb_is_column compares the provided character string against the names of the /rdb
columns.

Returns

The routine returns 1 if name is a column name, 0 otherwise.

Author
Terry Gaetz

A.5 Rewinding an /rdb File
A.5.1 rdb_rewind

rewind database to first data row

Synopsis
#include <mst_rdb/mst_rdb.h>
int rdb_rewind(
FILE *fin,

rdbHeader *hdr
)

Parameters
FILE *fin the stream to parse
rdbHeader *hdr
the rdb file description
Description

rdb_rewind repositions the database such that the next read will return the first row in the
database.

10 mst_rdb

Returns

Upon success it returns 0. If the file cannot be rewound, it returns 1. Upon error it returns
-1.

Author

Diab Jerius

A.6 Reading Data from the /rdb File
A.6.1 rdb_col_read_st

Grab columns of data from an /rdb data file.

Synopsis
#include <mst_rdb/mst_rdb.h>

int rdb_col_read_st(
FILE *fin,
rdbHeader *hdr,
DataColumnMap_st const *map,
void *data

)

Parameters

FILE *fin the stream to parse

rdbHeader *hdr
the rdb file description

DataColumnMap_st const *map
the columns to read

void *data
where to stow the data. must be pointer to an appropriate struct

Description

The rdb_col_read_st function extracts data from an /rdb file on a stream. It reads the next
record on the stream, extracting data via the specified column mapping and fills in a user
supplied structure.

An NULL string is returned if an RDB_String column contains no data, the user must
still free the pointer to the NULL string. An empty RDB_Num column is flagged as an
error if it is supposed to contain data. Empty lines are ignored.

When reading string arguments, this routine places into the target data structure a
pointer to a dynamically allocated string area, into which the string is copied. When the
user is finished using the string, this area should be freed.

Appendix A: Functions 11

Returns

The routine returns 1 if it successfully read data, 0 upon end of data. If the number of
columns in the record is not the same as in the header, or if a (numeric) column contains
garbage, a message is printed to stderr and the program is halted.

Author
Diab Jerius, Richard J. Edgar

A.7 Freeing Data structures
A.7.1 rdb_free_map

Frees the memory associated with an /rdb column map.

Synopsis
#include <mst_rdb/mst_rdb.h>

void rdb_free_map(DataColumnMap_st *map) ;

Parameters

DataColumnMap_st *map
the column map to free

Description

rdb_free_map - Frees the memory associated with an /rdb column map.

Author
Richard J. Edgar

A.7.2 rdb_free_hdr

Frees the memory associated with an /rdb header.

Synopsis
#include <mst_rdb/mst_rdb.h>

void rdb_free_hdr(rdbHeader *hdr);

Parameters

rdbHeader *hdr
the header to free

Description

rdb_free_hdr - Frees the memory associated with an /rdb header.

12 mst_rdb

Author

Diab Jerius

	1 Introduction
	A Functions
	Reading /rdb File Headers
	rdb_rd_hdr

	Mapping /rdb Columns
	rdb_map_cols_arst
	rdb_map_cols_stst

	Counting Lines in the /rdb File
	rdb_count

	Testing for the existence of a column with a given name
	rdb_is_column

	Rewinding an /rdb File
	rdb_rewind

	Reading Data from the /rdb File
	rdb_col_read_st

	Freeing Data structures
	rdb_free_map
	rdb_free_hdr

