
mstbuild

Page 1

NAME
mstbuild - manage the build environment and process for MST software

SYNOPSIS
mstbuild [<config options>] [<global options>] command [<command options>] [command [<command
options>]]

DESCRIPTION
mstbuild is primarily a front end to a variety of GNU autotool
 packages, with additional functionality to
implement local build
 conventions. It runs a subset of commands for initializing,
 bootstrapping,
configuring, and making an autotooled package.

It provides sensible, host-specific defaults for compilation flags as
 well as installation directories. It
provides these to the autotools
 through both command line arguments and environmental variables.

OPTIONS AND ARGUMENTS
mstbuild takes a list of global options followed by one or more
 commands, which may have options of
their own.

Options are specified using a getopt style interface. Long names are
 available when preceded with
double hyphens --, in which case only
 the minimal number of characters are required. Options which
take
 values may be separated from those values with the = character.

Environmental variables may be used to specify additional arguments
 to the command line:

MSTBUILD_ARGS0 specifies configuration options. Its
 contents are processed before any other
command line arguments

MSTBUILD_ARGS specifies other types of options. Its contents
 are processed after any
configuration options and before any
 other arguments on the command line.

In the following descriptions, $ROOT refers to the value of the --root argument.

Configuration Options
These options must occur at the very beginning of the command line.

--cwd dir

Change to the specified directory before running mstbuild.

--configfile|--cfg file

The name of the configuration file to load. This defaults to mstbuild.cfg.

--buildtarget target

The hardware/software platform to compile for. The default is
 the sysarch platform designated as
platform_os_generic.
 The target name may be a symbolic name recognized by sysarch

(e.g. platform_generic, etc).

Global Options
--config path

The path to a local autoconf site configuration file. This
 defaults to either the environmental
variable CONFIG_SITE, or /proj/axaf/share/config.site, in that order. The value may
contain strings of the
 form $variable, which will be replaced by the value of the
 variable.
Available variables are buildtarget (which will be
 replaced by the value of the --buildtarget
option) as well as any
 current environmental variable.

mstbuild

Page 2

--define|-D VAR=value

Define the specified environmental variable, setting it equal to the
 specified value. The value of
the --nouenv option has no affect on
 this option. The value may contain variable references of the
form ${var}; these will be interpolated by mstbuild. The available
 variables are those generated
by the following command:

 mst_envs --nofullpath -ldlibrarypath

The value of the following options are also interpolated

 root
 buildtarget
 prefix
 exec_prefix
 destdir
 perl_archname (Perl Config variable)

This option may be specified more than once. See also the --pdefine option.

--localdir

This option indicates that all steps after bootstrap are run in a
 separate local directory. The
directory used is

 mstlocaldir/package/buildtarget

where mstlocaldir is the output from the mstlocaldir program, package is the name of the
package, and buildtarget is the value
 of the --buildtarget option. This option forces --target_link

to be true. It has no effect on the state of the --target option.
 See --target_dir for more control
over this behavior.

If mstlocaldir is not available, this option is disabled; mstbuild won't even know it exists.

--noarch

This indicates that the package is not architecture specific, and sets

 exec_prefix = prefix

It overrides any command line attempts to specify exec_prefix.

--nomstenv

Normally mstbuild will use the MST_Envs package (if it is
 installed) to find dependencies in the
"standard" places in the MST
 environment. This option instructs mstbuild to not use the
 package.

--nouenv

Indicate that certain environmental variables will be ignored. See ENVIRONMENTAL VARIABLES
for the list.

--pdefine|-P VAR=[position]value

Append or prepend to the specified environmental variable VAR,
 which is assumed to be a colon
delimited list of paths. By default
 (if position is not specified) the value is put at the end of the
 list.
position may either by the character + (append) or - (prepend).

The value of the --nouenv option has no affect on this option. The
 value may contain variable
references of the form ${var}; these
 will be interpolated by mstbuild. The available variables
are
 those generated by the following command:

 mst_envs --nofullpath -ldlibrarypath

mstbuild

Page 3

The value of the following options are also interpolated

 root
 buildtarget
 prefix
 exec_prefix
 destdir
 perl_archname (Perl Config variable)

This option may be specified more than once. See also the --define
 option. This option is
processed after th --define option.

--target|-t

If specified, all steps after bootstrap are run in a separate
 directory given by --target_dir (see
also --localdir). This
 defaults to on. Specify --notarget to keep the build in the current
 directory.

--target_dir dir

If --target is specified, this option provides the name of the subdirectory. It defaults to the value of
the --buildtarget
 option.

--target_link

If --target is specified, create a symbolic link (named after the
 value of the --buildtarget option)
from the target directory to the
 current directory. This defaults to true if --target and --target_dir
are set by the user.

--Target|-T

This is the similar to the --target option, except that the subdirectory
 will be emptied before being
used.

--dryrun|-n

If specified once, mstbuild will echo the commands it would
 normally perform, but will not actually
execute them. If specified
 twice, any command which recognizes a "dry-run" option will be

executed with that option.

--makeflags|-m make flags

This option allows one to specify additional flags to be passed to the make command. Use this
with extreme caution! -m may be repeated.

--man|--usage

print full instructions and exit

--help

print an abbreviated help message and exit

--version

print version and exit

Installation and Grafting options

Values for the following options may include strings of the form $variable

 root prefix exec_prefix

These strings will be replaced by the value of the corresponding variable,
 which may be an environmental

mstbuild

Page 4

variable or the value of the similarly
 named option. Values from the following options are available:

 buildtarget root prefix exec_prefix

In order to reduce confusion, the options are processed in the above
 order, so that one can write the
following:

 --prefix=${root}

and get a sensical answer.

--graft path

The path to the graft executable. This defaults to what was
 discovered when mstbuild was built.
If graft is not available,
 the package will not be configured with grafting in mind. Set this to no or
off to force grafting off if it defaults to on.

--root path

The root directory off of which all destination paths originate. This
 defaults to the
${AXAF_SIMUL_ROOT}. This also defines where pkg-config will look
 for dependencies.

--destdir path

Sets the DESTDIR variable for make install if grafting is on. It
 defaults to $ROOT/pkgs. Do not
set this unless you are very brave.

--prefix prefix

With grafting on, sets the prefix variable for make install.
 With grafting off, sets the --prefix
option for configure. Do
 not set this unless you are very brave.

--exec_prefix path

With grafting on, sets the exec_prefix variable for make
 install. With grafting off, sets the
--exec-prefix option for configure. Do not set this unless you are very brave.

Template Options
Some commands take options which modify variables available to the
 template files. These options are:

--bugreport string

This specifies the value for the template bugreport variable.
 It defaults to that in templates.cfg.

--copyrightholder string

This specifies the value for the template copyrightholder variable.
 It defaults to that in
templates.cfg.

--emailcontact string

This specifies the value for the template emailcontact variable.
 It defaults to that in
templates.cfg.

--license_type license

Specify the license to copy. The available licenses are:

 GPL2
 GPL3
 SAO

mstbuild

Page 5

The default is GPL3.

--suffix string

A suffix to apply to the filenames of all files created by the chkstds or init options. Directory
names are unaffected. A
 preceding . is not automatically added.

--template_dir dir

Where to copy the templates from. To use this requires more
 information than is given here.

--version string

This specifies the value for the template version variable. The
 default vaule is read from
configure.ac (if that exists) or is 1.0.0.

Commands
Commands may have options; these are of the same form as the global
 options. A command's options
directly follow it on the command line.
 Some commands are conglomerations of multiple commands and
accept
 options for all of the commands they perform. For example, bootstrap also runs snippets, so
accepts the --copy option.
 If some of these commands have similarly named options, this can cause

confusion. For example, if a conglomerate command c runs commands a and b and both have an option
named --args, then in the
 following command line,

 c --args foo

it's uncertain whether a or b gets the --args foo option. To
 solve this problem, conglomerate command
options with the same names
 must be prefixed with their command names. For example,

 c --a-args foo --b-args goo

Typically commands are run in the following sequence:

 bootstrap
 configure
 make
 check
 dist
 distcheck
 install
 graft
 export

To see the actual shell command lines which will be executed, use the --dryrun option.

help

 help [options] [command_name | options [option_type]]

show help.

help takes the following options:

--page

Use a pager to show the help information.

It take zero or more arguments:

help

mstbuild

Page 6

shows the list of commands.

help command

shows help for command.

help options [args]

With no additional arguments, this shows the global options. The
 following arguments are
available:

config

shows the configuration options

template

shows the template options

init

 init [I<options>] [I<package name>]

init creates a skeleton package by copying template files to a
 directory of the given name (which
should be the package name). If
 the directory does not exist, it is created. If no package name is

specified, the skeleton is created in the current directory. If a configure.ac file is in the current
directory, that is scanned for
 the package name and version, else the package name is set to that
of
 the current directory.

Options:

Note that init also takes template options. See Template Options
 or run

 mstbuild help options template

--force

Force files to be created, even if they already exist. Backups
 will be created for existant
files.

--package_type|-t package type

This indicates what type of package is to be initialized. The
 available choices are:

perl_prog - a perl program

prog - a compiled (C/C++) program

lib_onedir - a compiled library in a single directory

cxx_lib_onedir - a C++ compiled library in a single directory

lib_multidir - a compiled library split into subsections

snippets

check and optionally update snippets

Options:

--copy

Copy snippets to the local directory if they do not exist locally or
 are out of date.

--diff|-D

If local snippets are out of date, print their differences.

mstbuild

Page 7

--exclude pattern

Exclude files which match the pattern. This uses a slightly extended
 version of the
standard shell file-matching pattern, where the *
 operator can match / characters. For
example:

 --exclude 'templates/*'
 --exclude 'snippet_dist/*'

This option may be repeated.

--force

Force snippets to be copied from the snippet repository, regardless
 of their state of
up-to-dateness.

--xsnip

If local snippets are out of date, exit with a non-zero value.
 The --copy and --diff options
are still obeyed if specified.

--dir directory

Specify the location of the directory holding the snippets. The default
 (
/proj/axaf/simul/share/mstbuild/snippets) should suffice.

boot

alias: bootstrap

run libtoolize, aclocal, autoheader, automake, and autoconf.

Options:

--aclocal_dir path list

This is a colon separated list of directories which contain local autconf macros. Note that
/proj/axaf/simul/share/aclocal is
 automatically searched

--autoconf alternative autoconf

This specifies an alternative version of autoconf to use. By
 default it uses what is in the
execution path.

--automake alternative automake

This specifies an alternative version of automake to use. By
 default it uses what is in the
execution path.

--aclocal alternative aclocal

This specifies an alternative version of aclocal to use. By
 default it uses what is in the
execution path.

--autoheader alternative autoheader

This specifies an alternative version of autoheader to use. By
 default it uses what is in the
execution path.

--libtoolize alternative libtoolize

This specifies an alternative version of libtoolize to use. By
 default it uses what is in the
execution path.

--autorun list of commands

mstbuild

Page 8

This option limits the list of commands to run to those given.
 The following commands are
recognizes:

 autoconf automake aclocal autoheader libtoolize

config

alias: configure

run configure.

Options:

--args argument list

Specify additional arguments to configure. This option may be
 repeated. The value of the
following options are interpolated into the
 arguments

 root
 buildtarget
 prefix
 exec_prefix
 destdir

--cache | --nocache

Turn caching by configure on or off. It is on by default.

make

run make

check

run make check

chkstds

chkstds checks for packaging consistency. The following
 checks are made:

required files in the package:

A license file, either COPYING or LICENSE, and README, NEWS,
 and INSTALL
 files

versioned NEWS and ChangeLog files:

The version number in the configure.ac file must appear in the
 first few lines of NEWS
and ChangeLog.

Options:

Note chkstds also takes template options. See Template Options
 or run

 mstbuild help options template

--create

Create missing files from templates. A missing ChangeLog file cannot
 be created. Be sure
to edit the README file.

dist

This first executes the chkstds command, then runs make dist

distcheck

mstbuild

Page 9

This first executes the chkstds command, then
 runs make distcheck

export

This command copies the distribution tarball to the export
 directory. If the --distcheck option is
specified, distcheck is
 first run. If distcheck is not run, the tarball must already exist.

Options:

--dir|-d directory

The export directory. This defaults to /proj/axaf/simul/export.

--distcheck|--nodistcheck

Run distcheck first, which will create the tarball. This is the
 default behaviour.

--ok|--no-ok

If set (the default) it's OK to generate the distribution tarball.
 This option is mainly useful in
the mstbuild.cfg file to prevent
 generation of a tarball for "proprietary" packages which
should never
 be exported.

install

run make install.

graft

run

 graft -nit ${prefix} ${destdir}/${prefix}

if there are any conflicts, exit and allow the user to resolve them.
 otherwise, run

 graft -it ${prefix} ${destdir}/${prefix}

clean

run make clean

distclean

run make distclean

maintclean

alias: maintainer-clean

run make maintainer-clean

configplus

execute commands: configure + make + check + distcheck

most

execute commands: bootstrap + configure + make + check + distcheck

all

execute commands: bootstrap + configure + make + check + distcheck + install + graft + export

dumpenv

output selected environmental variables.

Options:

mstbuild

Page 10

--all

Output all of the environmental variables, not just the select few.

--shell|-s shell

set the shell syntax to be used for the dumpenv command. Possible
 values are: bash, sh
, ksh, csh, tcsh.

It defaults to the contents of the SHELL environmental variable.

optvals

output values of the global options after applying any command line switches.

Configuration file
mstbuild reads a configuration file at startup, if available. By
 default it looks for mstbuild.cfg in the current
directory, but may
 be directed elsewhere with the --configfile option. Configuration
 files use an Apache
style syntax (for indepth information, see Config::General). There are two main constructs:

Option value assignment:

 option_name = value

where option_name is the long form of one of the command line
 options. Boolean options should
be given a value of 1 or 0 or true or false, e.g.

 arch = false

Block declaration:

There are unnamed blocks:

 <Directive>
 ...
 </Directive>

and named blocks

 <Directive name>
 </Directive>

Blocks may be nested. Option value assignment may take place within blocks.

Global configuration options value assignments are generally made
 outside of any blocks (see the
documentation on BuildTarget blocks
 for an exception).

The following blocks are recognized:

BuildTarget

These named blocks are used to specify options specific to a
 particular platform. The block names
should be specific platform
 designations (although they may contain glob wildcards
 (e.g.
x86_64-Linux_Debian*) and are matched against the sysarch
 generated
platform_generic, platform_native, os_type and OS
 variables.

The enclosed values are applied after the options outside of the BuildTarget block.
buildtarget options are applied after OS
 options. Global option assignments should appear at
the outermost
 level of this block. Options which may be specified only once will
 override options
specified outside the BuildTarget block. Options
 which may be specified multiple times (such as
--define and --makeflags) are added.

mstbuild

Page 11

For example,

 <BuildTarget athlon_64>
 makeflags = -march athlon
 </BuildTarget>

would set the global --makeflags option for athlon_64
 buildtargets.

define

This block contains values for the --define option. The block does
 not take a name. For example,

 --define a=b --define foo=goo

may be represented as

 <define>
 a = b
 foo = goo
 </define>

define blocks may be placed inside BuildTarget blocks.

Command

These blocks are named with a mstbuild command, and are used to
 specify command specific
options.

For example,

 <Command snippets>
 snippet_dir = snippets_dist
 exclude = templates/*
 exclude = snippets_dist/*
 </Command>

would set options for the snippets command.

Command blocks may be placed inside BuildTarget blocks.

EXAMPLES
To bootstrap, configure, make, make check, make install, and graft a package:

 mstbuild bootstrap configure make check install graft

Magic
This script performs a whole lot of magic in order to ensure that
 programs and libraries will appear in the
$ROOT
 directory structure while actually living in separate, package and
 version specific directories in
$ROOT/pkgs.

The packages and libraries are installed in $ROOT/pkgs,
 and then grafted onto $ROOT. We have to
massage things
 behind the scenes so that operationally none of the packages knows
 about $ROOT/pkgs,
just $ROOT.

This is a cursory summary of what happens here. Read the autoconf, automake, libtool, and
pkg-config docs if you want a more in
 depth understanding, i.e. this makes you say, 'eh?'.

The --destdir, --exec_prefix, and --prefix options combine
 to specify where the package will actually be
installed. This is
 where the true magic is...

mstbuild

Page 12

--destdir specifies the DESTDIR in the autoconf/automake
 sense, a directory used to stage the install...
not the final
 location, but a step along the way. --exec_prefix and --prefix
 provide package specific
subdirectories within --destdir. So
 despite the fact that they are handed to install in the prefix and
exec_prefix variables, they interact with DESTDIR
 in such a way that they are interpreted as
subdirectories of --destdir. Even if they are specified with a leading /, i.e. they
 are absolute pathes, they
are still treated as subdirectories of --destdir.

Confused? Good. Now we are in the same boat.

ENVIRONMENTAL VARIABLES
The following environmental variables are used, if available:

 MSTBUILD_ARGS MSTBUILD_ARGS0 CONFIG_SITE
 MAKE CC CXX F77 CFLAGS CXXFLAGS FFLAGS

The second batch will be ignored if the --nouenv flag is specfied.

To dump the environment variables that may be set or modified by this
 code, use the dumpenv
command.

PKG_CONFIG_PATH
PKG_CONFIG_PATH is treated specially. If the MST_Env module is
 available, an existing
PKG_CONFIG_PATH variable is ignored. If the MST_Env module is not available, an existing variable is
used. The --define option may be used to override this behavior; it will
 replace any previous or generated
value of PKG_CONFIG_PATH.

To add a path to an existing path, use the --pdefine option. This
 option is processed after the --define
option.

Glossary
CONFIG_SITE

autoconf site wide configuration file

OS

the OS

MAKE

make executable to use.

CC

C compiler

CXX

C++ compiler

F77

Fortran 77 compiler

CFLAGS

C compiler flags

CXXFLAGS

C++ compiler flags

mstbuild

Page 13

FFLAGS

Fortran 77 compiler flags

EXAMPLES
Advanced Usage
Debugging a library using an application

Say that you need to compile against a library which has been compiled
 with debugging turned on, and
which uses pkg-config. Let's
 say it's another mstbuild enabled compile.

The scheme is to install the library in a temporary spot, then coax
 the executable compilation to use it. Let
$ROOT be the location of
 the temporary directory.

1 Build and install the library with the following non-standard mstbuild flags:

 --root=$ROOT --graft=no -D CFLAGS=-g -D FFLAGS=-g

This creates a simple directory structure. Because mstbuild uses --root to find dependencies, if
the library requires other
 libraries, you'll have to explicitly specify the pkg-config search

directories via the --pdefine option:

 --pdefine PKG_CONFIG_PATH=-$OTHERROOT/lib/pkgconfig

2 Build the program, adding the correct path to the pkg-config metadata files:

 --graft=no \
 --pdefine PKG_CONFIG_PATH=-$ROOT/lib/pkgconfig

If the executable has library dependencies in $OTHERROOT, append the
$OTHERROOT/lib/pkgconfig to the --pdefine option value:

 --graft=no \
 --pdefine \
 PKG_CONFIG_PATH=-$ROOT/lib/pkgconfig:$OTHERROOT/lib/pkgconfig

Compile and install against a non-MST tree when MST_Env is available.

Normally MST_Env is used if it's available. If, however, you're
 working with dependencies which are too
hot for the standard MST
 install and which are installed in another directory tree, =mstbuild=
 should
ignore the MST environment. This example assumes that the
 other tree is complete, that all
dependencies are found there and that
 grafting is not used.

There are the options that should be set ($ROOT is the alternate
 directory tree)

 --graft=no
 --root $ROOT
 --nomstenv
 --define PKG_CONFIG_PATH=$ROOT/lib/pkgconfig

COPYRIGHT AND LICENSE
This software is Copyright The Smithsonian Astrophysical Observatory
 and is released under the GNU
General Public License. You may find a
 copy at: http://www.fsf.org/copyleft/gpl.html

VERSION
This documents version 3.2.17 of mstbuild.

mstbuild

Page 14

AUTHORS
Mike Tibbetts

Diab Jerius <djerius@cfa.harvard.edu>

