raygen

Edition 2.6.14, for version 2.6.14
10 July 2019

Diab Jerius

Copyright (©) 2006 Smithsonian Institution

raygen is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

raygen is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA

Table of Contents

1 Copyingo 1
2 Inmtroduction L. 3
3 Parameters...........l 5
4 Coordinate Systems............................. 7
5 Units 9
6 Source specification..........................L. 11
6.1 Position Generatorsc.ouiuiieiiiteniiieiiean 11
6.1.1 Intensity Distributions............. o L. 12

6.1.2 rect(name, width, height [, optargs])..................... 13

6.1.3 disk(name, radius [, optargs]).................. 13

6.1.4 image(name [, optargs|) ...t 14

6.1.5 point(name [, optargs])..... ..., 16

6.2 Spectrum Generatorsovuuuieiiiin e 16
6.2.1 mono(name, energy, flux).......... L 16

6.2.2 flat(name, energy_min, energy_max, flux)................ 17

6.2.3 spectrum(name [, optargs]) ..., 17

Variable and Parameter index 19

1 Copying

The software described by this manual is copyright (© 2006 Smithsonian Institution. All
rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

2 Introduction

raygen generates rays from one or more user specified sources, filling one or more user
specified entrance apertures. The output rays are in the bpipe format.

The source specification is done via scripts written in the 1ua language. raygen provides
a basic set of angular generators (image, point, rect) which may be combined with spectrum
generators to create fairly complicated sources. The use of an embedded scripting language
to combine these generators provides a high degree of flexibility.

The area to be illuminated (i.e. the telescope’s entrance aperture) is constructed from a
set of primitive geometric shapes (circles, annuli, annular wedges) which are combined via
a script (again, written in lua).

3 Parameters

raygen uses an IRAF compatible parameter file.

It takes the following parameters

source
The 1ua script which specifies the sources.

source_override
lua statements to be passed to the source script. These are placed in a function
called override, which may be called by the source script.

ea
A lua script which defines the entrance aperture to illuminate.

ea_override

lua statements to be passed to the entrance_aperture script. These are placed
in a function called override, which may be called by the script.

output
The output file. If it is the string ‘stdout’, the rays are written to the UNIX
standard output stream.

logfile
A file to which logging output should be written. If it is the string ‘stderr’ the
rays are written to the UNIX standard error stream.

limit_type

This determines how raygen knows when to stop outputting rays. It determines
what the 1imit parameter specifies. It can one of the following values:

‘rays’

the number of rays
‘krays’

the number of rays, in units of one thousand rays
‘Mrays’

the number of rays, in units of one million rays
‘sec’

the time to run, in seconds
‘ksec’

the time to run, in units of one thousand seconds
‘r/cm2’

rays per square centimeter at the entrance aperture
‘r/mm2’

rays per square millimeter at the entrance aperture

6 raygen

limit
The quantity of whatever 1imit_type specifies that raygen must generate.
node
The node Z position (mm) from which to measure the off-axis source angle
(I<theta>).
seedl
The first seed for the random number generator. It must be in the range
[1,2147483562].
seed2
The second seed for the random number generator. It must be in the range
[1,214748339]
block
The random number block to start at. It must be in the range [0,1048575].
ray_dist
How the rays should be distributed at the entrance aperture. Currently, only
‘random’ is supported.
debug
A list of debug flags; none are presently available.
version
Output the version to the UNIX standard error stream and exit.
help

Output a help message and exit.

4 Coordinate Systems

Source sky positions are specified in cylindrical coordinates, with the Z axis along the optical
axis. The angular distance from the optical axis is described by theta, the azimuth about
the axis by phi, where phi = 0 is along the +X axis. The distance to the source is actually
specified by its Z coordinate, which is generally zero at the telescope’s node, except in the
case of the AXAF HRMA, where it is zero at CAP datum A. (The ray generator actually
doesn’t set the zero point; it just cares about where the node is.)

5 Units

Angular and linear quantities may be specified in a variety of units. Linear quantities
without unit specifications are assumed to be in millimeters. Angular quantities without
unit specifications are assumed to be in radians. To specify a unit, pass the entire quantity
as a string, appending the unit to the value. For example,

2.0 --> radians
’2.0 deg’ -—> degrees

theta
theta

The available angular units are ‘deg’, ‘degree’, ‘arcmin’, ‘arcminute’;, ‘arcsec’,
‘arcsecond’, ‘milliarcsecond’, ‘rad’, ‘radian’, ‘milliradian’, ‘mrad’, ‘microradian’,
‘urad’.

The available linear units are ‘parsec’, ‘m’, ‘meter’, ‘decimeter’, ‘dm’, ‘centimeter’,
cn’, ‘millimeter’, ‘mm’, ‘micrometer’, ‘micron’, ‘um’, ‘nanometer’, ‘nm’, ‘Angstrom’,

‘angstrom’, ‘A’.

4

11

6 Source specification

Currently, sources are specified as combinations of position and spectrum generators. There
may be multiple spectrum generators associated with each position generator. There is only
one position generator per source.

You must write a lua function entitled source which creates the sources you wish to
model. Each source is begun with the begin_source function, and ended with the end_
source function. Both take a single parameter, namely a string specifying the name of the
source, which is used to identify it in any output:

function source()

begin_source(’M87 - knotl’)
mono(’knotl spectrum’, 2.5, 1) -- the spectrum generator
point(’knotl point’) -- the position generator
end_source(’M87 - knotl’)

end

Note that the identifying string given to end_source must be identical to that passed
to begin_source.

The file containing your source script is what is given to the raygen source parameter.
The source override code provided by the source_override parameter is placed in a func-
tion called override. You should place a call to override early in your script (it can be
done outside of the source function).

The provided position generators are described in the following sections.

6.1 Position Generators

Position generators define the angular extent and position of a source. Each function has
both mandatory and optional arguments. Optional arguments are usually set to a reason-
able default. Mandatory arguments are explicitly included in the argument list; optional
arguments are passed via a lua table (an associative array, or hash in Perl lingo). For
example, here are two equivalent methods of creating a rectangular source at a specific
off-axis location:

optargs = { }

optargs.theta = ’2 arcmin’

optargs.phi = ’3 arcmin’

optargs.z = ’-2 parsec’

rect(’square in the sky’, ’1 arcsec’, ’1 arcsec’, optargs)

rect(’square in the sky’, ’1 arcsec’, ’1 arcsec’,
{
theta = ’2 arcmin’,
phi = ’3 arcmin’,

12 raygen

z = ’-2 parsec’

)

Note that z is negative; the Z coordinate increases towards the focal plane.

6.1.1 Intensity Distributions

Several intensity distribution models are available (well, two). The parameters for these are
usually passed as a Lua table in the optargs optional arguments parameter.

The intensity distribution may be specified independently in the X and Y directions, or
may be specified as a common distribution. If no distribution is specified it will be uniform.
Common parameters are provided via the the dist table, while parameters specific to an
axis are provided via the x and y tables. This code

disk("disk", ’40 arcminutes’,

{
dist = {
type = ’gaussian’,
sigma = ’3 arcsec’
1,
x = { center = ’1 arcsec’ 1},
y = { center = ’1 arcsec’ }
)

sets up a disk source with a radially symmetric Gaussian offset from the source cen-
ter. Note that the center parameter is only valid in the axis specific tables. To specify
independent distributions, don’t use the dist parameter:

disk("disk", ’40 arcminutes’,

{
x ={
type = ’gaussian’,
center = ’1 arcsec’,
sigma = ’3 arcsec’
3,
y =1
type = uniform’
3,
)

The following distributions are available. The type of distribution is specified by the
type parameter, as shown in the above examples.

uniform

This provides a constant intensity across the source. It has no parameters.

Chapter 6: Source specification 13

gaussian

This is a Gaussian distribution. The center is nominally at the center of the
source, but may be changed. The width of the Gaussian is specified by one of
the following two parameters:

fwhm
The Full Width Half Maximum of the Gaussian.

stddev
The standard deviation of the Gaussian.
The center of the Gaussian is specified via the center parameter, which must

be specified independently for each axis.

6.1.2 rect(name, width, height [, optargs])

A rectangle with the given angular width and height dimensions. name is a string used for
identification purposes. optargs is a lua table containing optional parameters.

The position of the source is given by these parameters:

theta
The distance from the optical axis to the center of the rectangle, in radians. If
not specified, it defaults to ‘0’.

phi
The azimuth about the optical axis, in radians. If not specified, it defaults to
‘0.

z

The Z coordinate of the source. This defaults to an infinitely distant source.

For instructions on specifying the source distribution, Section 6.1.1 [Intensity Distribu-
tions], page 12.

6.1.3 disk(name, radius [, optargs])

A circular disk with the given angular radius. name is a string used for identification
purposes. optargs is a lua table containing optional parameters.

The position of the source is given by these parameters:

theta
The distance from the optical axis to the center of the rectangle, in radians. If
not specified, it defaults to ‘0’.

phi
The azimuth about the optical axis, in radians. If not specified, it defaults to
‘0.

z

The Z coordinate of the source. This defaults to an infinitely distant source.

14 raygen

For instructions on specifying the source distribution, Section 6.1.1 [Intensity Distribu-
tions], page 12.

6.1.4 image(name [, optargs])

This specifies that the angular distribution of the source is derived from an image, either
read from file or one previously created (the latter is currently not supported). name is a
string used for identification purposes. Note that the ‘file’ optional argument is for now
not optional; it must be specified.

The following optional arguments are recognized:

file
The name of the image file

format

The format of the file. If not specified, B<raygen> will attempt to guess at the
format. It may be one of the following:

‘ascii’
The pixel values are in ASCII. Values are separated by whitespace
(including newlines). The file does not contain any information

about the pixel size or dimensions; you must specify these using
the pixsz, pixsz_x, pixsz_y, nx, ny arguments.

‘double’

The pixel values are stored as binary double precision floating point
numbers. The file does not contain any information about the pixel
size or dimensions; you must specify these using the pixsz, pixsz_
X, pixsz_y, nx, ny arguments.

‘float’

The pixel values are stored as binary single precision floating point
numbers. The file does not contain any information about the pixel
size or dimensions; you must specify these using the pixsz, pixsz_
X, pixsz_y, nx, ny arguments.
‘fits’

The image is a standard FITS image. The pixel size may be spec-
ified by the ‘CDELT’n FITS keywords, or by the optional pixsz,
pixsz_x, pixsz_y arguments. If they are not specified, the default
is 0.5 seconds of arc. If the pixel size is specified in the FITS file,
the units for the size may be specified with the ‘CUNIT’n FITS key-
words. If not, degrees are assumed. The FITS keywords ‘CRPIX’n
and ‘CRVAL’n are supported.

If the FITS image has a coordinate with a ‘CTYPE’ whose value
begins with ‘RA’; it is taken to be in the standard Astronomical
Right Ascension coordinate system, and the X axis flip flag is

Chapter 6:

nx
ny

pixsz
pixsz_x
pixsz_y

theta

phi

clip

flip

Source specification 15

turned on automatically (as in that system the X pixel increment
is negative, which leads to incorrectly flipped images otherwise).

‘pbm,
The image is in the Portable Bitmap format. The dimensions of
the image are encoded in the file. The user must specify the size of
the pixels using the optional pixsz, pixsz_x, pixsz_y arguments
Cpg1n7

The image is in the Portable Grayscale Map format. The dimen-
sions of the image are encoded in the file. The user must specify
the size of the pixels using the optional pixsz, pixsz_x, pixsz_y
arguments

The dimensions of the image. Depending upon the image format, this may be
specified in the image file.

The size of the pixels. Pixels need not be square. Depending upon the image
format, this may be specified in the image file.

The distance from the optical axis to the center of the rectangle, in radians. If
not specified, it defaults to ‘0’.

The azimuth about the optical axis, in radians. If not specified, it defaults to
407.

The Z coordinate of the source. It defaults to an infinitely distant source.

The minimum value of pixel to raytrace. Pixels with values less than this are
ignored.

This takes one of the following values:

X

The image is flipped along the X axis.

The image is flipped along the Y axis.
Xy

16 raygen

The image is flipped along both the X and Y axes.

point_idx_x

point_idx_y
The pixel index (possibly fractional) of the position in the image which corre-
sponds to the angular source position specified by theta and phi. You may
also specify this indirectly via point_wcs_x/point_wcs_y and ref_idx_x/ref_
idx_y and ref_wcs_x/ref_wcs_y.

point_wcs_x

point_wcs_y
The WCS position which corresponds to the angular source position specified
by theta and phi. This is used in conjunction with ref _idx_x/ref_idx_y and
ref_wcs_x/ref_wcs_y.

ref_wcs_x

ref_wcs_y
The WCS position of a reference point in the image. This is used in conjunction
with ref_idx_x/ref_idx_y and point_wcs_x/point_wcs_y.

ref_idx_x

ref_idx_y
The pixel index (possibly fractional) of the reference point in the image. This
is used in conjunction with ref_wecs_x/ref_wcs_y and point_wcs_x/point_
WCS_Y.

6.1.5 point(name [, optargs])

A point source. name is a string used for identification purposes. optargs is a lua table
containing optional parameters. The following optional arguments are recognized:

theta
The distance from the optical axis to the point, in radians. If not specified, it
defaults to ‘0’.

phi
The azimuth about the optical axis, in radians. If not specified, it defaults to
‘0.

4

The Z coordinate of the source. It defaults to an infinitely distant source.

6.2 Spectrum Generators

The spectrum generators are:

6.2.1 mono(name, energy, flux)

This models a monoenergetic spectrum. name is a string used for identification purposes.
energy is the energy in keV. Flux is in photons/s/cm~2 at the telescope.

Chapter 6: Source specification 17

6.2.2 flat(name, energy_min, energy_max, flux)

This models a flat photon spectrum (i.e, constant number of photons as a function of
energy). name is a string used for identification purposes. energy_min and energy_max
specify the energy range, in keV. The bounds are not included in the range. Flux is in
photons/s/cm~2 at the telescope.

6.2.3 spectrum(name [, optargs]|)

This function specifies an arbitrary, binned spectrum to simulate. name is a string used for
identification purposes. Note that the ‘file’ optional argument is for now not optional; it
must be specified.

The following optional arguments are recognized:

file
The name of the file containing the spectrum.
format
The format of the file. It defaults to ‘rdb’. It may be one of:
‘rdb’
The file is in an rdb table. There must be at least three columns,
which denote the limits of the bins and the flux within each bin.
The names of the columns may be specified by the emin, emax, and
flux optional arguments.
emin
The name of the column containing the minimum edge of a bin, in keV, for
those formats for which it is appropriate. It defaults to ‘emin’.
emax
The name of the column containing the maximum edge of a bin, in keV, for
those formats for which it is appropriate. It defaults to ‘emax’.
flux
The name of the column containing the flux (for those formats for which it is
appropriate). It defaults to ‘flux’.
units
The wunits in which the spectrum 1is specified. It may be one of
‘ergs/s/cm2/kev’, ‘kev/s/cm2/kev’, or ‘photons/s/cm2’.
scale

An arbitrary scale factor to apply to the spectrum. It defaults to ‘1.0’.

Variable and Parameter index

19

A M
ascii......oo 14 Mrays . ..o 5
B N
block.o 6 0 Yo L= 6
DIttt et e e e e e e e 15
C DY o 15
Clap . 15 O
D output................ 5
debug............... 6
AOUDLE. ... u P
PO .o 15
E o 15
Phi.. e 13, 15, 16
ea....... SRS g PhotonS/S/Cm2 17
ea_override..............oooiiiii 17 PIXSzZ.. .o 15
eméx ... " PIXEZ_K « e oo 15
OMATL. ottt .
ergs/s/ oo/ ke 17 PiXSZ Y oot 15
ES/S/CME/REV o vvvvvviiie e point_didx_x...........l 16
point_idx_y.......... ool 16
F point_wes_X...... ... 16
POINt_WCS_Y...ooviiiii i 16
file ... 14, 17
T < 14
ELAD . oot 15 R
float.......oooivviiiiii 14 T/CM2 . 5
0 17 N T 5
format.. ... 14, 17 ray_dist 6
fwhm. ... 13 TAYS « et 5
TAD . 17
G TECE ottt 13
) ref _ddX_ X ... 16
gaussian........... ..o oo 13 TOF_AAX_J oot 16
el _WCS X ittt e 16
H Tef _WCS Y . 16
help....oo 6 S
SCAL . ottt 17
K BB C 1ttt 5
kev/s/Cm2/KeVo 17 Seedl. . 6
RS e oottt 5 SEEA2 . i e 6
T =Y o2 5 SOUT C . o vttt ettt et ettt 5
source_override ...t 5
L STAAeV . .ottt 13
1amat .o e 6
limit_type.............oooi 5 T
10GEIle ottt 5 theta ..o 13, 15, 16

20 raygen

U X
. b S 15
un%form """""""""""""""""""" 12 .2 15
NIt S . ot 17
Y
2SS 15
v Z

VEISION « ottt ettt e 6 Z 13, 15, 16

	Copying
	Introduction
	Parameters
	Coordinate Systems
	Units
	Source specification
	Position Generators
	Intensity Distributions
	rect(name, width, height [, optargs])
	disk(name, radius [, optargs])
	image(name [, optargs])
	point(name [, optargs])

	Spectrum Generators
	mono(name, energy, flux)
	flat(name, energy_min, energy_max, flux)
	spectrum(name [, optargs])

	Variable and Parameter index

