
trace-nest

Page 1

NAME
trace-nest - ray trace a nest of shells, hey!

SYNOPSIS
trace-nest options

ARGUMENTS
trace-nest uses an IRAF-compatible parameter interface. See the
 section on Setup below. The available
parameters are:

tag

A prefix to be used on all intermediate files created. There are lots
 of intermediate files;
see the section on Intermediate Files.

src

The location of a raygen compatible source script. If it is the
 string default, the value of
the source_spec keyword in the trace-nest configuration file is used.

srcpars

Extra parameters to be passed to the source script. See the
 documentation for the source
script for information on which
 parameters are available. script accepts

These are passed directly to raygen via the source_override
 parameter.

shells

The shells that should be raytraced and merged. The value may be take
 one of the
following values:

all

All of the shells defined in the mirror geometry database will be
 raytraced.

active

All of the shells defined in the mirror geometry database which are
 marked as
active will be raytraced. If the geometry database does not
 provide the active
attribute, all of the shells are raytraced.

list

A comma delimited list of individual shell ids or ranges
 (min-max). For example:

 shells=1-10,23,45

output

The output stream to which to write the rays. It may be a filename,
 or the string stdout, in
which case rays will be written to the
 standard output stream. If it is the string default, a
file name
 will be created by appending the output_fmt to the tag (with an
 intervening
period).

output_fmt

The output format of the rays. May be one of fr, bp, bpipe, rdb,
 or a fits variant. See
Output Formats for more information.

output_coord

The output coordinate system of the rays. May be one of osac, hrma, xrcf.

trace-nest

Page 2

output_fields

Which data fields to output for each ray. The value may be one of

all

A rather large amount of information.

<field names>

A comma delimited list of field names to output. Field names may be
 prefixed with
-, indicating that they are to be removed from the
 list of output fields. If the only
fields specified are those to be
 removed, the initial output list contains all of the
fields in the data.

The field name min is an alias for specifying the following fields:

 position direction weight energy time

The order of additive and subtractive fields is unimportant; all additive
 fields are
inserted into the list before the subtractive fields are removed.

seed1

The first seed for the random number generator. It must be in the range
 [1,2147483562].

seed2

The second seed for the random number generator. It must be in the range
 [1,214748339]

block

The random number block to start at. It must be in the range [0,1048575].

block_inc

The spacing between random number blocks for each random process. 100
 is a good
number.

tstart

The start time of the observation in seconds. If less than zero and
 jitter is turned on, the
start of the valid jitter time range is used.

limit

The numerical value of the limit at which to stop generating rays at
 the telescope entrance
aperture. The number of rays which reach the
 focal plane are typically lower than this. The
limit_type
 parameter specifies the units for this value.

limit may be either a floating point number, in which it is used for
 all shells, or the name of
a file containing limit values for all
 shells. The file must be an RDB formatted file with
columns shell and limit.

If limit_type is a unit of time, this is added to the
 start time (see tstart) to determine
the stop time of the
 simulation. If jitter is on and this is set to 0, then the stop
 time is set
equal to the end of the valid jitter time range.

limit_type

The units of the limit at which to stop generating rays.

ksec

kiloseconds of observation time

sec

trace-nest

Page 3

seconds of observation time

r/mm2

a ray density at the entrance aperture in rays / mm^2

r/cm2

a ray density at the entrance aperture in rays / cm^2

ray_dist

The ray distribution at the entrance aperture. It may be one of random or ringspoke.
Currently, ringspoke is ignored.

nrings

The number of rings to use if the ray_dist parameter is ringspoke.

nspokes

The number of spokes to use if the ray_dist parameter is ringspoke.

focus

A boolean parameter indicating that the focus of the system is to be
 determined. See the
Focus section for more details.

z

The position along the Z (optical) axis at which to leave the rays.
 This is in the OSAC
coordinate system.

z may be either a floating point number, in which it is used for
 all shells, or the name of a
file containing Z values for all
 shells. The file must be an RDB formatted file with columns
shell and z. The Z value for the combined shells should have
 a shell value of 99999.

tally

If non-zero, a tally of rays will be written to the standard
 error stream every tally rays.
This is useful if you're wondering
 why it's taking so long to run the raytrace. This tallies the
number
 of rays which make it out of the nest, after all of the post-optic
 apertures.

throttle

If non-zero, this specifies the number of rays which should be
 output after the shells are
merged. Rays are first eliminated
 based upon their probability of reflection, and then only
the
 requested number are passed through through (provided enough are
 available). The
number may be varied in a Poisson fashion by setting throttle_poisson.

If negative, rays will be eliminated by their probability of
 reflection, but no total limit to their
number will be set.

A side effect of this option is that all rays will have a weight of one.

throttle_poisson

If true, and if throttle is non-zero, then the number specified by throttle is treated as the
mean of a Poisson distribution, and the
 number of rays actually output will be drawn from
that distribution.

clean

Which intermediate files to delete. It may be none, in which case
 nothing is removed,
rays in which case intermediate ray files are
 removed, or all in which everything is

trace-nest

Page 4

removed.config_dir

The directory containing the trace-nest configuration file.

config_db

The name of the configuration file which provides the details of the
 HRMA configuration.
See the Configuration File section below.

version

Print out the version information and exit.

help

Print out this message and exit.

debug

A comma separated list of debugging options. See the Debugging
 section for more
information.

DESCRIPTION
trace-nest raytraces a nest of Wolter type I X-ray telescope
 shells with various apertures and baffles. It
was designed around the
 AXAF HRMA, but may be used for other systems. It works by using trace-shell
to raytrace each shell, finally merging them into a
 single file. It traces each shell sequentially, storing each
shells'
 rays on disk; it ends up using twice as much disk space as you think.
 It'll clean up after itself,
though (see the clean parameter).

trace-nest uses a variety of programs to accomplish the raytrace.
 To see the actual raytrace command
pipeline, use the debug pcomm
 option.

Setup
trace-nest uses an IRAF compatible parameter interface. Because
 it calls many other programs, you will
actually need to have parameter
 files for all of them handy.

To simplify things, there is a command (trace-nest_setup) which
 creates copies in the current directory
of the all of the required
 parameter files.

Configuration File
The trace-nest configuration file (specified by the config_dir
 and config_db parameters) describes the
telescope
 configuration. Before you create your own, look at
/proj/axaf/simul/databases/ts_config/00Index.html and see if
 there's one to suit your fancy. Also, note that
trace-nest can
 only use configuration files with a .cnf suffix. For more
 information on raytrace
configuration files, etc. see ts_config.

Intermediate Files
trace-nest produces a few intermediate files. Each file is given a
 prefix which consists of the value of the
tag parameter followed
 the shell number. For the final set of merged rays, the shell number
 is left off. For
example, if tag is foo, you'll get files of

	 foo_1.totwt-in foo_2.totwt-in

and

	 foo.totwt_in

If trace-nest is only tracing one shell, it doesn't include the shell
 number in the file name.

trace-nest

Page 5

tag.bp

The rays for the particular shell, in bpipe format.

tag.gi

This is a rather arcanely formatted file required by SAOdrat. It's
 not of much general
interest.

tag.totwt-in

This file contains the number and weight of the rays at the entrance
 aperture. It is
produced by tot_wt.

tag.totwt-out

This file contains the number and weight of the rays which have made
 it through the entire
configuration. It is produced by tot_wt.

tag.totwt-throttle

This file contains the number and weight of the rays which have made
 it through the entire
configuration, after getting throttled. It is
 produced by tot_wt.

tag.focus.lis

This is created during a focus run by saofocus.

Output Formats
trace-nest outputs one of the following formats, specified by the output_fmt parameter:

fr

The fr format has no header. Each ray is in a fullray
 structure. See
/proj/axaf/simul/include/fullray.h for the formats
 of the ray structure.

bp or bpipe

The rays are in bpipe format. See the bpipe documentation for
 more information on this.

rdb

The rays are written as an RDB table.

a fits variant

Various FITS formatted outputs may be specified. In all cases the
 output must be to a file.

fits or fits-std

The rays are written in the uncommon and seldom used AXAF Photon FITS

standard.

fits-events

The rays are written in the much more common "events" format. It
 differs from the
AXAF FITS Photon Standard in that the binary table is
 named EVENTS, the rt_
prefix is removed from the column names,
 and the energy column is named
energy and is in units of eV. Most
 X-ray Astronomy software uses this convention.

Focus
If you wish to determine where the focal point for a given
 configuration is, set the focus parameter to yes
. However,
 because of bad interactions between the focus algorithm and wildly
 scattered rays,
micro-roughness induced ray scattering and ghost-ray
 tracking is turned off when focussing. Additionally,

trace-nest

Page 6

the source is
 forced to be the default source specified by the configuration file,
 which should be a point
source. The default source requires at least
 one parameter, namely energy. The focus procedure is
carried out by saofocus which leaves its results in a file called tag.focus.lis, (where you've specified
tag). This file is
 pretty arcane; generally to extract the focus from there, run the
 script getfocus on it:

 getfocus tag.focus.lis

which will write out the focal position (in OSAC coordinates) to the
 UNIX standard output stream. Note
that you'll get the focus of all of
 the individual shells as well as the nest (unless you set clean to all).

All of the shells' focal distances, including the focal distance
 for the combined shells, is written to the file
tag.focus.rdb.
 The combined shells are assigned a shell number of 99999.

Debugging
There are several debug options available:

pcomm

Print out the raytrace command before executing it. This gives you
 some idea of which
programs are running and what their inputs are.

noexec

Generate the raytrace command and any required intermediate files, but
 do not execute it.
Most useful with the pcomm debug option.

reuse

Reuse the raytrace output from a previous identical run to
 regenerate the summary
information. noexec must not be
 specified simultaneously. The raytrace parameters
should be
 identical except for the addition of this flag.

noproject

Do not project the rays to the value specified by the z parameter.
 This is a temporary
kludge, and will probably not survive into the
 next version of trace-nest.

noghosts

Ghost rays will not be propagated through the system.

saveblock

The next unused random number block is written to tag.block.

SEE ALSO
trace-shell, ts_config

COPYRIGHT AND LICENSE
This software is Copyright The Smithsonian Astrophysical Observatory
 and is released under the GNU
General Public License. You may find a
 copy at: http://www.fsf.org/copyleft/gpl.html

Author
Diab Jerius (djerius@cfa.harvard.edu)

