Appendix **D**____

Coordinate Systems

Terrance J. Gaetz

In this appendix we summarize the relations between various coordinate systems of interest; these include:

Tower:	HRMA Alignment Test System Tower at EKC (HATS measurements)
DPSAOsac:	Double-pass raytraces to simulate HATS measurements
SAOsac:	standard ray traces ($e.g.$, XRCF conditions)
XRCF:	coordinate system at the XRCF test facility
HRMA:	HRMA-based coordinate system aligned with the standard AXAF coordinate directions

Figure B.1 illustrates the different coordinate systems. Note that the XRCF coordinates differ from the standard HRMA/AXAF coordinate system by a flip of 180° about the X_{HRMA} axis, while the DPSAOsac coordinates differ from the standard SAOsac coordinates by a flip of 180° about the X_{SAOsac} axis (the Y_{HRMA} axis). Note also that we are primarily concerned here with the directions of the coordinate axes rather than the location of the coordinate origin.

The SAO/MST raytrace system, SAOsac, specifies rigid-body positioning in terms of the location and orientation of the body-center of the optic. The body-center "tilt" coordinates are azmis and elmis, where

- **azmis:** positive rotation about an axis parallel to the SAOsac Y axis; positive rotation is right-hand-rule rotation with angle increasing from the +Z axis towards the +X axis. (X' axis is the new X axis after **azmis** rotation; Z' axis is the new Z axis after **azmis** rotation).
- elmis: negative rotation about an axis parallel to SAOsac X' axis; positive rotation is right-hand-rule with angle increasing from the +Y axis towards the +Z' axis. Positive elmis rotation takes +Z' axis towards the +Y axis.

For completeness, the corresponding conventions for mirror element rotations in the HRMA and XRCF coordinates are

Figure B.1: Relations between HATS tower, XRCF, and SAOsac coordinates

Figure B.2: Schematic of XRCF coordinate and rotation conventions

- θ_Y : positive rotation about an axis parallel to the HRMA +Y axis; positive rotation is right-hand-rule rotation with angle increasing from the +Z axis towards the +X axis.
- θ_Z : positive rotation about an axis parallel to the HRMA +Z axis; positive rotation is right-hand-rule rotation with angle increasing from the +X axis towards the +Y axis.

and

- $tilt_Y$: positive rotation about an axis parallel to the XRCF +Y axis; positive rotation is right-hand-rule rotation with angle increasing from the +Z axis towards the +X axis.
- $tilt_Z$: positive rotation about an axis parallel to the XRCF +Z axis; positive rotation is right-hand-rule rotation with angle increasing from the +X axis towards the +Y axis.

At the XRCF, the orientation of the HRMA as a whole was specified by *pitch* and *yaw*:

- *pitch*: positive rotation about an axis parallel to the XRCF +Y axis. Positive rotation is right-hand-rule rotation with angle increasing from the +Z axis towards the +X axis.
- yaw: positive rotation about an axis parallel to the XRCF +Z axis. Positive rotation is right-hand-rule rotation with angle increasing from the +X axis towards the +Y axis.

The raytrace simulations are always performed in the appropriate SAOsac coordinate system; the orientation of the HRMA relative to the source is given by *bundle_el* and *bundle_az*, the direction *from* the source *towards* HRMA. The relation between *pitch*, *yaw*, *bundle_el*, and *bundle_az* are summarized in Table B.1.

Table B.1: Relations between coordinate systems

The relations between coordinate directions are summarized in Table B.2.

Table B.2: Relations between coordinate systems

$+Y_{XRCF}$	=	$-Y_{HRMA}$	=	$-X_{SAOsac}$	=	$-X_{DPSAOsac}$		
$+Z_{XRCF}$	=	$-Z_{HRMA}$	=	$+Y_{SAOsac}$	=	$-Y_{DPSAOsac}$		
$+X_{XRCF}$	=	$+X_{HRMA}$	=	$-Z_{SAOsac}$	=	$+Z_{DPSAOsac}$		
$+tilt_Y$	=	$- heta_Y$	=	$+ elmis_{SAOsac}$	=	$+ elmis_{DPSAOsac}$	=	+pitch
$+tilt_Z$	=	$- heta_Z$	=	$+azmis_{SAOsac}$	=	$-azmis_{DPSAOsac}$	=	+yaw