Appendix

Coordinate Systems

Terrance J. Gaetz

In this appendix we summarize the relations between various coordinate systems of interest; these include:

Tower:	HRMA Alignment Test System Tower at EKC (HATS measurements)
DPSAOsac:	Double-pass raytraces to simulate HATS measurements
SAOsac:	standard raytraces (e.g., XRCF conditions)
XRCF:	coordinate system at the XRCF test facility
HRMA:	HRMA-based coordinate system aligned with the standard AXAF co- ordinate directions

Figure B. 1 illustrates the different coordinate systems. Note that the XRCF coordinates differ from the standard HRMA/AXAF coordinate system by a flip of 180° about the $X_{H R M A}$ axis, while the DPSAOsac coordinates differ from the standard SAOsac coordinates by a flip of 180° about the $X_{S A O s a c}$ axis (the $Y_{H R M A}$ axis). Note also that we are primarily concerned here with the directions of the coordinate axes rather than the location of the coordinate origin.

The SAO/MST raytrace system, SAOsac, specifies rigid-body positioning in terms of the location and orientation of the body-center of the optic. The body-center "tilt" coordinates are azmis and elmis, where
azmis: positive rotation about an axis parallel to the SAOsac Y axis; positive rotation is right-hand-rule rotation with angle increasing from the $+Z$ axis towards the $+X$ axis. (X^{\prime} axis is the new X axis after azmis rotation; Z^{\prime} axis is the new Z axis after azmis rotation).
elmis: negative rotation about an axis parallel to SAOsac X^{\prime} axis; positive rotation is right-hand-rule with angle increasing from the $+Y$ axis towards the $+Z^{\prime}$ axis. Positive elmis rotation takes $+Z^{\prime}$ axis towards the $+Y$ axis

For completeness, the corresponding conventions for mirror element rotations in the HRMA and XRCF coordinates are

Figure B.1: Relations between HATS tower, XRCF, and SAOsac coordinates

Figure B.2: Schematic of XRCF coordinate and rotation conventions
$\theta_{Y}: \quad$ positive rotation about an axis parallel to the HRMA $+Y$ axis; positive rotation is right-hand-rule rotation with angle increasing from the $+Z$ axis towards the $+X$ axis.
θ_{Z} : positive rotation about an axis parallel to the HRMA $+Z$ axis; positive rotation is right-hand-rule rotation with angle increasing from the $+X$ axis towards the $+Y$ axis.
and
tilt $_{Y}$: positive rotation about an axis parallel to the XRCF $+Y$ axis; positive rotation is right-hand-rule rotation with angle increasing from the $+Z$ axis towards the $+X$ axis
till $_{Z}$: positive rotation about an axis parallel to the XRCF $+Z$ axis; positive rotation is right-hand-rule rotation with angle increasing from the $+X$ axis towards the $+Y$ axis
At the XRCF, the orientation of the HRMA as a whole was specified by pitch and yaw:
pitch: positive rotation about an axis parallel to the XRCF $+Y$ axis. Positive rotation is right-hand-rule rotation with angle increasing from the $+Z$ axis towards the $+X$ axis.
yaw: positive rotation about an axis parallel to the XRCF $+Z$ axis. Positive rotation is right-hand-rule rotation with angle increasing from the $+X$ axis towards the $+Y$ axis.

The raytrace simulations are always performed in the appropriate SAOsac coordinate system; the orientation of the HRMA relative to the source is given by bundle_el and bundle_az, the direction from the source towards HRMA. The relation between pitch, yaw, bundle_el, and bundle_az are summarized in Table B. 1

Table B.1: Relations between coordinate systems

$$
\begin{aligned}
& + \text { bundle_el }_{\text {SAOsac }}=- \text { bundle_el }_{\text {DPSAOsac }}=- \text { pitch } \\
& + \text { bundle_a }_{S A O s a c}=- \text { bundle_az }_{\text {DPSAOsac }}=-y a w
\end{aligned}
$$

The relations between coordinate directions are summarized in Table B.2.

