XRCF Phase 1 Testing: Analysis Results

Smithsonian Astrophysical Observatory

May 10, 2004

Contents

1 Introduction 1.1 The Facility and Experimental Setup 1.2 The Measurements 1 - 1 1.2 The Measurements 1 - 3 2 Summary 3 The HXDS Flow Proportional Counters 3.1 Introduction 3.1.1 Calibration Overview 3.2 Apertures 3 - 1 3.2

	3.2	Apertures	3 - 1
		3.2.1 Focal Plane Apertures	3 - 1
		3.2.2 BND Apertures	3 - 5
	3.3	Spectral Response Function	3 - 7
	3.4	Gain Nonuniformity and Anode Aging	3 - 12
	3.5	Quantum Efficiency	3 - 15
		3.5.1 Monochromator Results	3 - 16
		3.5.2 Absolute Broad Band	3 - 26
		3.5.3 Relative QEs from Flat Field Calibration	3 - 28
		3.5.4 Relating Flat Field, HRMA, and BESSY measurements	3 - 31
		3.5.5 Final Results: Standardized FPC QEs	3 - 34
	3.6	Future Work	3 - 37
4	The	e HXDS Solid State Detectors	
	4.1	Introduction	4 - 1
	4.2	Calibration Overview	4 - 1
	4.3	Spectral Response Function, SRF	4 - 2
		4.3.1 Components of the Response Function	4 - 2
		4.3.2 Interpeak Pileup	4 - 5
	4.4	Results of Fitting Response Function Spectra	4 - 7
	4.5	Detector Efficiency vs. Energy Narrow Band	4 - 20
	4.6	Q. E. Broad Band: White light Calibration	4 - 25
		4.6.1 The algorithm for calculating the synchrotron radiation spectrum	4 - 25
		4.6.2 The SYNCH Model	4 - 39
		4.6.3 Synchrotron Measurement Procedures	4 - 39
		4.6.4 Results of the Fitting	4 - 41

		4.6.5 Icing Icing <td< th=""><th>4 - 63 4 - 63</th></td<>	4 - 63 4 - 63
	4.7	Future Work	4 - 63
5	Dea	adtime and Pileup Correction in the HXDS FPCs and SSDs	
	5.1	Introduction	5 - 1
	5.2	Deadtime and Pileup Time Windows	5-2
	5.3	Calibration Measurements	5 - 3
	5.4	Deadtime consistency testing	5 - 3
		5.4.1 Experimental configuration	5 - 3
		5.4.2 Data reduction	5-4
		5.4.3 Correction equations	5-5
		5.4.4 Results	5-8
		5.4.5 Simplified and More General Method for Deadtime Determination	5-8
		5.4.6 Estimated accuracy in analysis of AXAF calibration data	5-9
	5.5	Recommendations	5 - 10
	5.6	Appendices	5 - 11
6	FPO	C Window Mesh Effect and its Correction	
	6.1	Introduction	6 - 1
	6.2	HRMA Image on FPC Mesh	6 - 2
	6.3	Mesh Transmission Model	6 - 2
	6.4	Mesh Scan	6 - 2
	6.5	Mesh Correction	6 - 3
	6.6	Conclusion	6 - 4
7	Hig	h Speed Imager Calibration	
	7.1	Introduction	7 - 1
	7.2	Calibration Data Summary	7 - 1
	7.3	HSI Quantum Efficiency Measurements	7-2
	7.4	Count Rate Linearity	7-2
	7.5	Flat Fields	7 - 10
	7.6	Spatial Distortion	7 - 20
	7.7	Ion Shield Transmission	7 - 22
8	HX	DS Translation Stages and Related Calculations	
	8.1	Introduction	8 - 1
	8.2	Hardware Description: Focal Plane Stack	8 - 1
	8.3	Hardware Description: BND	8-2
	8.4	Hardware Description: Apertures for SSD and BND Detectors	8-2
	8.5	Stage Log File Formats	8-3
	8.6	Computations with the Stage Log information: fpc_x Detectors $\ldots \ldots \ldots$	8-3
	8.7	Computations with the Stage Log information: Other Detectors	8-5
	8.8	Known Shortcomings of this Method	8 - 5

9	Spectral Fitting in HXDS Detector Data Analysis	
	9.1 Introduction	9 - 1
	9.2 Reduction of the Line Measurements	9-1
	9.3 A Sample Fit: Ti K– α	9-4
	9.4 A Higher Fidelity Method for Analysis of FPC Line Data	9-5
	9.5 Analysis of BESSY FPC Monochromator data	9-8
10	Simulations	
	10.1 Introduction	10 - 1
	10.2 HRMA Model	10 - 1
	10.2.1 Optics' Figure	10 - 1
	10.2.2 Baffles and Support Structure	10 - 3
	10.2.3 Mirror Surface	10 - 3
11	HRMA Effective Area: SSD C-continuum Measurements	
11	11.1 Introduction	11 – 1
	11.2 SSD C-continuum Effective Area Measurements	11 - 2
	11.3 Pileup Correction	11 - 2
	11.4 SSD Flat Field Test	11 - 22
	11.5 SSD Energy Scale	11 - 22
	11.6 SSD Deadtime Correction	11 - 27
	11.7 Beam Uniformity Test	11 - 34
	11.8 SSD Relative Quantum Efficiency	11 - 34
	11.9 SSD Icing Effect	11 - 39
	11 10Background	11 - 42
	11 11Data Analysis and Reduction	11 - 42
	11 12Effective Area	11 - 42
	11 13Error Analysis	11 - 49
	11 14Comparing Measurements with the Baytrace Prediction	11 - 49
	11 15Calibrating the HRMA Effective Area	11 - 54
	11 16HRMA Effective Area Baytrace Predictions	11 - 56
	11 17XRCF HRMA Effective Area	11 - 67
	11 18On-orbit HRMA Effective Area Prediction	11 - 77
	11 19 Conclusion	11 - 87
		11 01
12	HRMA Effective Area: Spectral Line Measurements	
	12.1 Introduction \ldots	12 - 1
	12.2 FPC Data Reduction	12 - 1
	12.3 Gain Nonuniformity in the open BND-H detectors	12 - 2
	12.4 FPC Beam Uniformity (BU) effects	12 - 3
	12.5 Relative Quantum Efficiencies (RQE) of the FPC detectors	12 - 3
	12.6 Corrected HRMA Entrance Flux: FPC detectors	12 - 4
	12.7 Effective Areas: FPC detectors	12 - 5
	12.8 Error Analysis: FPC detectors	12 - 5
	12.9 SSD Data Analysis	12 - 10
	12.10Monochromator/FPC Effective Area Measurements	12 - 11

13 Fi	tting the HRMA Effective Area	
13	1 Introduction	13 - 1
13	2 Mirror Model	13 - 1
13	3 Setup	13 - 2
13	4 Fitting	13 - 3
13	5 Resulting Fits	13 - 35
14 W	Ing Scans: Data Reduction and Pinhole Effective Areas	14 4
14	1 Pinhole Effective Areas	14 - 4
	14.1.1 X-ray data reduction	14 - 4
	14.1.2 Raytrace simulations of the pinhole experiments	14 - 5
14	2 The Experiment as Performed	14 - 5
	14.2.1 History of the Pitch Problem	14 - 6
	14.2.2 Yaw Reference Error	14 - 8
	14.2.3 Vignetting by Quadrant Shutters	14 - 8
14	.3 Pinhole Effective Areas: X-ray data vs Raytrace	14 - 8
	14.3.1 Single Quadrant Wing Scan Pinhole Data	14 - 9
	14.3.2 Transverse (out of plane) Wing Scan Pinhole Data	14 - 55
	14.3.3 Double Quadrant Wing Scan Pinhole Data	14 - 58
14	4 Discussion and Outstanding Issues	14 - 61
14	5 Raytrace and Data Reduction Versions	14-61
15 W	ing Scans: Analysis	
15	1 PSD based on HDOS metrology	15 - 1
15	2 Surface Brightness Profiles	15 - 2
	15.2.1 Shell 1 scans \ldots	15 - 6
	15.2.2 Shell 3 scans \ldots	15 - 15
	15.2.3 Shell 4 scans \ldots	15 - 27
	15.2.4 Shell 6 scans \ldots	15 - 40
	15.2.5 Double Quadrant Scans	15 - 57
15	3 Out-of-Plane Scattering	15 - 57
15	4 Comparison with Encircled Energy Data	15 - 58
15	5 " $2W_1$ " Profiles	15 - 59
	15.5.1 Shell 1 scans	15 - 62
	15.5.2 Shell 3 scans	15 - 67
	15.5.3 Shell 4 scans	15 - 72
	15.5.4 Shell 6 scans	15 - 77
	15.5.5 2 Quadrant Scans	15 - 82
15	6 Outstanding Analysis Issues	15 - 84
15	7 Implications for Scattering Models	15 - 84
16 Er	ncircled Energy	
16	.1 Comparison of Encircled Energy Measurements to Simulations	16 - 2
17 Oi	f Axis Effective Area	

18	HRMA Ring Focus Measurements	
	18.1 Introduction	18 - 1
	18.2 Measurements and Data	18 - 2
	18.3 Data Analysis	18 - 3
	18.4 Results	18 - 4
	18.5 Ring Focus Models	18 - 4
	18.6 Comparison of Data with the Model	18 - 7
	18.7 Conclusion	18 - 8
19	HRMA PSF	
20	HRMA Ghost Image Properties	
	20.1 Ghost Images – Geometry	20 - 1
	20.2 Ghost Baffle Design	20 - 3
	20.2.1 Control of Single Reflection Ghosts	20 - 5
	20.3 HSI Images of Ghosts	20 - 6
	20.4 Determination of Off-axis Angle Using Ghosts	20 - 7
91	Analysis of the "Mosh Plane" HSI Image	
4 1	21.1 Mash Plane HSI Image	21 - 1
	21.1 Mesh-1 falle fish fillage	21 - 1 21 - 2
	21.2 Applying of the Image	21 - 2 21 - 2
	21.3 Analysis of the image	21 - 3 21 - 4
	21.3.1 Axial position of the image	21 - 4 21 - 4
	21.4 Optating the This	21 - 4 21 - 5
		21 0
22	Off-Axis imaging: comparing HSI images to raytrace models	
	22.1 Off-axis HSI Images (Full HRMA)	22 - 1
	22.2 Off-axis HSI Images (Single Shell)	22 - 13
23	Predictions of the On-orbit Performance	
24	EIPS Beam Uniformity	
	24.1 Beam Uniformity Tests	24 - 1
	24.2 Beam Uniformity Analysis	24 - 2
	24.3 Future Directions	24 - 9
	24.4 Acknowledgments	24 - 10
25	HRMA Ring Focus Shutter Test	
	25.1 Introduction	25 - 1
	25.2 Measurements	25 - 1
	25.3 Data Analysis	25 - 1
	25.4 Besults	$\frac{-5}{25}-2$
	25.5 Conclusion	25 - 3
0.0		
26	26.1 HRMA Focus Measurements at XRCE	96 1
	26.2 Undate of SAO HRMA Baytrace Model from YRCF Focus Date	20 = 1 26 = 4
	26.2 Updated deformation and sum files	20 = 4
		20 - 10

27	'Rigid-Body Misalignment Parameters	
	27.1 HATS Data	27 - 1
	27.1.1 November 1996 HATS ATP (Augmented) Data Set	27 - 3
	27.1.2 Conversion of HATS data to Rigid Body Coefficients	27 - 5
	27.2 Construction of the Mirror Rigid-Body Database	27 - 5
	27.3 Future Directions	27 - 8
າຍ	HDMA Tilta at YDCF	
20	28.1. Coordinate Contants and tilt or also	00 1
	28.1 Coordinate Systems and the angles	28 - 1
	28.2 The Measurements	28 - 3
	28.3 Comparison with models	28 - 4
	28.4 Future work	28 - 4
	28.5 Quad shutter tilt data from XRCF tests	28 - 5
	28.5.1 Shell 1	28 - 5
	28.5.2 Shell 3	28 - 6
	28.5.3 Shell 4	28-7
	28.5.4 Shell 6	28 - 8
~~		
29	HRMA Off-Axis Focal Positions	
30	Internal Tilt-Compensated Coma-Free Decenter of the AXAF mirrors	
	30.1 Quadrant Shutter Flux Balance	30 - 1
	30.2 Off-Axis X-ray Images	30 - 2
	30.3 Morphology of the Off-axis X-ray Images	30 - 2
	30.3.1 Off-Axis Images: Large Lobes	30 - 6
	30.3.2 Off-Axis Images: Pincushion Caustics	30 - 7
	30.4 Measuring the Tilt-Compensated Decenter	30 - 10
	30.5 Future Directions	30 - 16
٨	Incidental Data Tables	
A		A 1
	A.1 Introduction	A - 1
в	Coordinate Systems	
С	Quadrant Shutter Nomenclature	
п	Appendix: HRMA Pointing at XRCF	
D	D 1 Introduction	D _ 1
	D.2 Sources of Information	D = 1
	D.2 Sources of Information	D - 2 D - 2
	D.2.1 Test Order and Times	D - 2
	D.2.2 Actuator Encoder Readouts	D – 2
	D.3 Initial Actuator Position (IAP)	D – 3
	D.4 Actuator Failures	D – 3
	D.5 Data Processing	D-5
	D.6 Discrepant Tests	D – 6
	D.6.1 Phase 1	D-6
	D.6.2 Phase 2	D-6
	D.7 The Pitch Problem and its Effect on Wing Scan Data	$\mathrm{D}-7$
	D.7.1 History of the Pitch Problem	$\mathrm{D}-7$

		D.7.2 Yaw Reference Error	- 9
\mathbf{E}	HR	MA Dimensional Data	
	E.1	HRMA Axial Datum Locations	- 1
		E.1.1 HRMA Baffle Plates	- 4
		E.1.2 P6 Ghost Baffle	- 4
		E.1.3 HRMA Structure Assembly (HSA) E	- 4
		E.1.4 Forward HRMA Structure (FHS)	-4
		E.1.5 Thermal Precollimator	-7
		E.1.6 Aft HRMA Structure (AHS)	-7
	E.2	HRMA Mirror Spacing	- 10
	E.3	HRMA Baffles and Obstructions	- 16
		E.3.1 Thermal Precollimator and Forward HRMA Structure Baffles E -	- 18
		E.3.2 Aft HRMA Structure Baffles	- 20
		E.3.3 CAP Ghost Baffles	- 22
		E.3.4 P6 Ghost Baffle	- 22
		E.3.5 Fiducial Transfer System Periscope	- 22
	E.4	Relation between HDOS and Raytrace Coordinates	- 24
	E.5	HRMA Optic Prescription	- 26
	E.6	HRMA Optic Clocking Angles	- 26
			_

Bibliography

Bib - 1

List of Figures

1.1	Schematic of XRCF	1 - 2
1.2	On-Axis Encircled Energy/Effective Area Measurements	1 - 5
1.3	Wing Scan Measurements	1 - 6
1.4	Mirror Ends Measurements	1-7
1.5	2D Pinhole Scan Measurements	1-7
1.6	PSF Outer Core Measurements	1 - 8
1.7	HSI Image Measurements	1 - 9
3.1	Relative size of 36-mm fpc_hn aperture \ldots	3 - 8
3.2	Example spectra from BESSY SX700 monochromator	3-9
3.3	BESSY KMC spectra–scan across Ar-K edge	3 - 10
3.4	BESSY SX700 spectra–scan across Ar-L edge	3 - 10
3.5	Ar-K edge work function	3 - 11
3.6	Ar-L edge work function	3 - 11
3.7	Counting rate linearity spectra	3 - 13
3.8	Gain nonuniformity	3 - 14
3.9	Model FPC QE	3 - 16
3.10	Absolute QE for fpc_hn and fpc_x2	3 - 17
3.11	Relative QE for fpc_x2 from BESSY and XRCF	3 - 19
3.12	Measured window transmissions	3 - 20
3.13	QE vs. window transmission for fpc_x2	3 - 21
3.14	QE mapping of fpc_hn and fpc_x2	3 - 22
3.15	Measured window deflections	3 - 23
3.16	Small-scale 2D QE mapping	3 - 24
3.17	1D QE mapping scans of fpc_hn	3 - 25
3.18	fpc_x2 QE at Ar-K edge	3 - 26
3.19	White beam spectra	3 - 27
3.20	Fitted absolute QE for fpc_hn and fpc_x2	3 - 39
3.21	Fitted absolute QE for fpc_ht and fpc_hb	3 - 40
3.22	Fitted absolute QE for fpc_hs	3 - 41
3.23	Fitted absolute QE for fpc_5	3 - 41
4.1	Components of the HYPERMET function.	4 - 3
4.2	Response functions of ssd_5 on both sides of the Ge L_{III} edge	4 - 5
4.3	Response functions of ssd_x and ssd_5 at 4.1 keV	4 - 6

4.4	The pulse-height spectrum of radiation from an Fe target excited by	
	a $^{244}Cm \alpha$ -emitter	4 - 13
4.5	The difference between the monochromator energy setting and the	
	fitted energy.	4 - 15
4.6	Fitted low-energy (rising) tail parameters for ssd_5 and ssd_x . The	
	upper panel shows the tail norm (counts in the tail), plotted as a	
	fraction of the total number of counts in the main peak. The lower	
	panel shows the corresponding values of the slope parameter	4 - 17
4.7	Fitted shelf norm (counts in the shelf) for ssd_5 and ssd_x , plotted as	
	a fraction of the total number of counts in the main peak.	4 - 18
4.8	Fitted escape and fluorescent line norms for ssd_5 (upper panel) and	
	ssd_x (lower panel), plotted as a fraction of the total number of counts	4 - 19
4.9	Reduced chi-squared χ^2 values for the fitted regions of the spectra	4 - 20
4.10	Measured QE data from SX700 data and their corresponding fitted	
	curves for ssd_5 and ssd_x . The upper panel emphasizes the Al-K edge	
	fine structure, and the lower panel provides a detailed view of the QE	
	near the O-K edge.	4 - 22
4.11	The fitted QE curves extended to 10 keV. The upper plot shows the	
	QE curve for ssd5 approaching a value of one at higher energies. The	
	lower plot shows the ratio of QEs as a function of energy	4 - 26
4.12	ssd_x Synchrotron White Light Spectra	4 - 40
4.13	Data and XSPEC fit at the white beam for ssd_5 with no Al filter	4 - 42
4.14	Data and XSPEC fit at the white beam for ssd_x with no Al filter	4 - 45
4.15	Data and XSPEC fit for ssd_5 at the white beam with 27.4 μ m Al filter	4 - 49
4.16	Data and XSPEC fit for ssd x at the white beam with 27.4 μ m Al filter	4 - 52
4.17	Data and XSPEC fit for ssd_5 at the white beam with 133.4 μ m Al filter	4 - 56
4.18	Data and XSPEC fit for ssd_x at the white beam with 133.4 μ m Al filter	4 - 59
5.1	Example SSD deadtime calibration 55 Fe spectrum	5 - 5
6.1	HBMA HSI image with -9.7 mm defocus	6 - 5
6.2	Shell 1	6 - 6
6.3	Shell 3	6 - 6
6.4	Shell 4	6 - 6
6.5	Shell 6	6 - 6
6.6	Al-K α (1.49 keV)	6 - 7
6.7	$Ti-K\alpha$ (4.51 keV)	6 - 7
6.8	$Fe-K\alpha$ (6.40 keV)	6 - 7
6.9	$Zn-K\alpha$ (8.64 keV)	6 - 7
6.10	Al–K α . Shell 1	6 - 8
6.11	Al–K α . Shell 3	6 - 8
6.12	Al-K α . Shell 4	6 - 8
6.13	Al–K α . Shell 6	6 - 8
6.14	Al–K α . HRMA	6 - 9
6.15	$Ti-K\alpha$. HRMA	6 - 9
6.16	$Fe-K\alpha$. HRMA	6 - 9
6.17	$Zn-K\alpha$. HRMA.	6 - 9
6.18	Al–K α . HRMA	6 - 10

6.19	Ti–K α . HRMA	6 - 10
6.20	Fe–K α . HRMA	6 - 10
6.21	Zn–K α . HRMA.	6 - 10
6.22	Al–K α . HRMA	6 - 11
6.23	Ti–K α . HRMA	6 - 11
6.24	Fe–K α . HRMA	6 - 11
6.25	$Zn-K\alpha$. HRMA.	6 – 11
6.26	HXDS FPC-X2 Mesh Scan data fit to the model. Date: $96/12/21$	6 – 12
6.27	HXDS FPC-X2 Mesh Scan data fit to the model. Date: 96/12/24	6 – 13
6.28	HXDS FPC-X2 Mesh Scan data fit to the model Date: 97/01/15	6 - 14
6.29	HXDS FPC-X2 Mesh Center Offset	6 - 15
0.20		0 10
7.1	Angular dependence of relative quantum efficiency. B-K and C-K	7 - 3
7.1	(continued) O-K and Fe-L	7-4
7.1	(continued) Cu-L and Mg-K.	7-5
7.1	(continued) Al-K and Mo-L.	7 - 6
7.1	(continued) Sn-L and Ti-K.	7-7
7.1	(continued) Fe-K	7-8
7.2	HSI post-processing electronics fast discriminator count rate linearity	7-9
7.3	HSI post-processing electronics image count rate linearity	7-9
7.4	Sample flat field <i>FPC</i> scan pattern	7 - 11
7.5	<i>FPC</i> flat field profile scans. C-K and Fe-L.	7 - 12
7.5	(continued) Al-K and Fe-K.	7 - 13
7.6	HSI super flat field.	7 - 14
77	Central HSI tile showing region of degraded sensitivity	7 – 15
7.8	Horizontal cut across region shown in Figure 7.7	7 - 16
7.9	Low sensitivity region of $HSI (+Y - Z)$	7 - 17
7.0	Central 3×3 tile region of HSI flat field	7 - 18
7.10 7.11	+V + Z region of HSI flat field showing variable gap width	7 - 10
7.12	HSI super flat Z projection	7 - 20
7.12 7.13	HSI super flat Z projection (detail)	7 - 20
7.13 7 14	HSI super flat V projection (detail)	7 - 21 7 - 21
7.14 7.15	HSI super flat V projection (detail)	7 - 21 7 - 22
1.10		1 22
8.1	The HXDA translation stages and detectors	8-2
0.1	Sample INKmod log file obtained with the above all command in VCDEC	06
9.1	Sample JMKmod log life, obtained with the show all command in ASPEC	9 - 0
9.2	Sample JMKmod spectral int to 11 K- α spectrum	9 - 7
9.5	factor and Dettern. Chalf news	0 10
0.4	Ling all and Bottom: Shell norm	9 - 10
9.4	Line snape parameters for the fpc_nn as functions of energy. Top: Fano	0 11
	factor, and Bottom: Shell norm	9 - 11
11.1	C-continuum SSX and SS5 spectra: Shell 1	11 - 4
11.2	C-continuum SSX and SS5 spectra: Shell 3	11 - 5
11.3	C-continuum SSX and SS5 spectra: Shell 4	11 - 6
11.0	C-continuum SSX and SS5 spectra: Shell 6	11 - 7
11.5	SSX and SS5 pulser spectra: Shell 1	11 - 0
11.0	SSX and SS5 pulser spectra. Shell 3	11 _ 10
TT'0	DAY and DOD bubbli provide Diferration	TT 10

11.7	SSX and SS5 pulser spectra: Shell 4	11 - 11
11.8	SSX and SS5 pulser spectra: Shell 6	11 - 12
11.9	SSX spectrum and pileup correction: Shell 1	11 - 14
11.10	SSX spectrum and pileup correction: Shell 3	11 - 15
11.11	SSX spectrum and pileup correction: Shell 4	11 - 16
11.12	SSX spectrum and pileup correction: Shell 6	11 - 17
11.13	SS5 spectrum and pileup correction: Shell 1	11 - 18
11.14	SS5 spectrum and pileup correction: Shell 3	11 - 19
11.15	SS5 spectrum and pileup correction: Shell 4	11 - 20
11.16	SS5 spectrum and pileup correction: Shell 6	11 - 21
11.17	C-continuum flat field test SSX and SS5 spectra	11 - 23
11.18	SSX and SS5 energy scales for the flat field test (Phase-J)	11 - 24
11.19	SSX and SS5 energy scale linear fit residuals for the flat field test	
	(Phase-J)	11 - 25
11.20	C-continuum flat field test SSX and SS5 spectra as functions of energy	11 - 26
11.21	SSX and SS5 energy scales for the C-continuum effective area mea-	
	surements (Phase-E)	11 - 28
11.22	SSX and SS5 energy scale linear fit residuals for the C-continuum	
	effective area measurements (Phase-E)	11 - 29
11.23	SSX and SS5 energy scales for the C-continuum effective area mea-	-
	surements (Phase-D)	11 - 30
11.24	SSX and SS5 energy scale linear fit residuals for the C-continuum	
	effective area measurements (Phase-D)	11 - 31
11.25	C-continuum flat field test SSX and SS5 pulser spectra	11 - 33
11.26	C-continuum source beam uniformity test	11 - 35
11.20 11.27	C-continuum FPC-5 beam flux ratio	11 - 36
11.28	SS5/SSX quantum efficiency ratio	11 - 38
11.29	SSD 500 jcing data	11 - 40
11.30	X-ray transmission of ice	11 - 41
11.31	SSX and SS5 spectra of background run	11 - 43
11.32	SSD C-continuum effective area measurement: Shell 1	11 - 44
11.33	SSD C-continuum effective area measurement: Shell 3	11 - 45
11.34	SSD C-continuum effective area measurement: Shell 4	11 - 46
11.35	SSD C-continuum effective area measurement: Shell 6	11 - 47
11.36	Calibration data vs. ravtrace prediction: Shell 1	11 - 50
11.37	Calibration data vs. raytrace prediction: Shell 3.	11 - 51
11.38	Calibration data vs. ravtrace prediction: Shell 4	11 - 52
11.39	Calibration data vs. raytrace prediction: Shell 6	11 - 53
11.00	Calibration data vs. raytrace prediction: HBMA	11 - 55
11 41	Baytrace prediction of XRCF Shell 1 effective area and encircled energy	11 - 57
11 42	Raytrace prediction of XRCF Shell 3 effective area and encircled energy	11 - 58
11 43	Baytrace prediction of XRCF Shell 4 effective area and encircled energy	11 - 59
11.10	Baytrace prediction of XRCF Shell 6 effective area and encircled energy	11 - 60
11.11	Baytrace prediction of XRCF HRMA effective area and encircled energy	11 - 61
11 46	Ravtrace prediction of on-orbit Shell 1 effective area and encircled energy	11 - 62
11 47	Ravtrace prediction of on-orbit Shell 3 effective area and encircled energy	11 - 63
11 48	Raytrace prediction of on-orbit Shell 4 effective area and encircled energy	11 - 64
11 /0	Ravtrace prediction of on-orbit Shell 6 effective area and encircled energy	11 - 65
11.10	ing made prediction of on orbit phen o encentre area and encircled energy	TT 00

11.50	Raytrace prediction of on-orbit HRMA effective area and encircled energy	11 - 66
11.51	XRCF HRMA and four shells effective areas within 2 mm aperture	11 - 68
11.52	XRCF HRMA and four shells effective areas within 35 mm aperture	11 - 69
11.53	XRCF HRMA and four shells effective areas within 2π steradian	11 - 70
11.54	On-orbit HRMA and four shells effective areas within 2 mm aperture	11 - 78
11.55	On-orbit HRMA and four shells effective areas within 35 mm aperture	11 - 79
11.56	On-orbit HRMA and four shells effective areas within 2π steradian	11 - 80
12.1	Shell 1 & 3 Effective Areas through 35 mm pinholes	12 - 7
12.2	Shell 4 & 6 Effective Areas through 35 mm pinholes	12 - 8
12.3	Full HRMA Effective Areas through 35 mm pinholes	12 - 13
12.4	Shell 1 & 3 Effective Areas through 2 mm pinholes	12 - 14
12.5	Shell 4 & 6 Effective Areas through 2 mm pinholes	12 - 15
12.6	Full HRMA Effective Areas through 2 mm pinholes	12 - 16
12.7	Full HRMA Effective Areas through 2 mm pinholes	12 - 17
131	Multilaver mirror	13 – 2
13.1	Shell 1 effective area and residuals through 2mm pinhole	13 - 4
13.2	Shell 3 effective area and residuals through 2mm pinhole	10 - 4 13 - 5
13.0	Shell 4 effective area and residuals through 2mm pinhole	13 - 6
13.1	Shell 6 effective area and residuals through 2mm pinhole	13 - 7
13.6	Shell 1 SSD continuum effective area vs. model $2.01 - 2.4$ keV	13 - 9
13.7	Shell 1 SSD continuum effective area vs. model, $2.51 - 2.9$ keV	13 - 10
13.8	Shell 1 SSD continuum effective area vs. model $2.8 - 4.0$ keV	13 - 11
13.9	Shell 1 SSD continuum effective area vs. model $3.9 - 7.0$ keV	13 - 12
13.10	Shell 1 SSD continuum effective area vs , model, $5.0 - 8.5$ keV	13 - 13
13.11	Shell 1 SSD continuum effective area vs , model, $8.0 - 12.0$ keV	13 - 14
13.12	Shell 3 SSD continuum effective area vs. model, $2.01 - 2.4$ keV	13 - 15
13.13	Shell 3 SSD continuum effective area vs. model, 2.25 – 2.9 keV	13 - 16
13.14	Shell 3 SSD continuum effective area $vs.$ model, $2.8 - 4.0$ keV	13 - 17
13.15	Shell 3 SSD continuum effective area vs. model, 3.9 – 7.0 keV	13 - 18
13.16	Shell 3 SSD continuum effective area $vs.$ model, $5.0 - 8.5$ keV	13 - 19
13.17	Shell 3 SSD continuum effective area $vs.$ model, $8.0 - 12.0$ keV \ldots	13 - 20
13.18	Shell 4 SSD continuum effective area $vs.$ model, $2.01 - 2.4$ keV \ldots	13 - 21
13.19	Shell 4 SSD continuum effective area vs. model, $2.25 - 2.9$ keV \ldots	13 - 22
13.20	Shell 4 SSD continuum effective area vs. model, $2.25 - 2.9$ keV \ldots	13 - 23
13.21	Shell 4 SSD continuum effective area vs. model, $3.9 - 7.0$ keV	13 - 24
13.22	Shell 4 SSD continuum effective area vs. model, $5.0 - 8.5$ keV	13 - 25
13.23	Shell 4 SSD continuum effective area vs. model, $8.0 - 12.0$ keV \ldots \ldots	13 - 26
13.24	Shell 6 SSD continuum effective area vs. model, $2.01 - 2.4$ keV \ldots \ldots	13 - 28
13.25	Shell 6 SSD continuum effective area vs. model, $2.25 - 2.9$ keV \ldots \ldots	13 - 29
13.26	Shell 6 SSD continuum effective area vs. model, $2.8 - 4.0 \text{ keV}$	13 - 30
13.27	Shell 6 SSD continuum effective area vs. model, $3.9 - 7.0$ keV	13 - 31
13.28	Shell 6 SSD continuum effective area vs. model, $5.0 - 8.5$ keV	13 - 32
13.29	Shell 6 SSD continuum effective area vs. model, $8.0 - 12.0 \text{ keV}$	13 - 33
1 / 1	Effect of much shotten size (1) a 1 11 a	14 0
14.1	Effect of quadrant shutter vignetting: shell 3 vs. shell 4	14 - 9
14.2	Effect of quadrant snutter vignetting	14 - 10

14.3	Quadrant shutter vignetting: at the quadrant shutter plane	14 - 11
14.4	Pinhole effective areas; Shell 1T at Al-K α	14 - 12
14.5	Pinhole effective areas; Shell 1N at Al-K α	14 - 13
14.6	Pinhole effective areas; Shell 1B at Al-K α	14 - 14
14.7	Pinhole effective areas; Shell 1S at Al-K α	14 - 15
14.8	Pinhole effective areas; Shell 1T at Ti-K α	14 - 16
14.9	Pinhole effective areas; Shell 1N at Ti-K α	14 - 17
14.10	Pinhole effective areas; Shell 1B at Ti-K α	14 - 18
14.11	Pinhole effective areas; Shell 1S at Ti-K α	14 - 19
14.12	Pinhole effective areas; Shell 3T at Al-K α	14 - 20
14.13	Pinhole effective areas; Shell 3N at Al-K α	14 - 21
14.14	Pinhole effective areas; Shell 3B at Al-K α	14 - 22
14.15	Pinhole effective areas; Shell 3S at Al-K α	14 - 23
14.16	Pinhole effective areas; Shell 3S at Ti-K α	14 - 24
14.17	Pinhole effective areas; Shell 3S at $Cr-K\alpha$	14 - 25
14.18	Pinhole effective areas; Shell 3T at Fe-K α	14 - 26
14.19	Pinhole effective areas; Shell 3N at Fe-K α	14 - 27
14.20	Pinhole effective areas; Shell 3B at Fe-K α	14 - 28
14.21	Pinhole effective areas; Shell 3S at Fe-K α	14 - 29
14.22	Pinhole effective areas; Shell 4T at Al-K α	14 - 30
14.23	Pinhole effective areas; Shell 4N at Al-K α	14 - 31
14.24	Pinhole effective areas; Shell 4B at Al-K α	14 - 32
14.25	Pinhole effective areas; Shell 4S at Al-K α	14 - 33
14.26	Pinhole effective areas; Shell 4S at Ti-K α	14 - 34
14.27	Pinhole effective areas; Shell 4S at $Cr-K\alpha$	14 - 35
14.28	Pinhole effective areas; Shell 4T at Fe-K α	14 - 36
14.29	Pinhole effective areas; Shell 4N at Fe-K α	14 - 37
14.30	Pinhole effective areas; Shell 4B at Fe-K α	14 - 38
14.31	Pinhole effective areas; Shell 4S at Fe-K α	14 - 39
14.32	Pinhole effective areas; Shell 4S at Cu-K α	14 - 40
14.33	Pinhole effective areas; Shell 6B at C-K α	14 - 41
14.34	Pinhole effective areas; Shell 6T at Al-K α	14 - 42
14.35	Pinhole effective areas; Shell 6N at Al-K α	14 - 43
14.36	Pinhole effective areas; Shell 6B at Al-K α	14 - 44
14.37	Pinhole effective areas; Shell 6S at Al-K α	14 - 45
14.38	Pinhole effective areas; Shell 6S at Ti-K α	14 - 46
14.39	Pinhole effective areas; Shell 6S at $Cr-K\alpha$	14 - 47
14.40	Pinhole effective areas; Shell 6T at Fe-K α	14 - 48
14.41	Pinhole effective areas; Shell 6B at Fe-K α	14 - 49
14.42	Pinhole effective areas; Shell 6S at Fe-K α	14 - 50
14.43	Pinhole effective areas; Shell 6T at Cu-K α	14 - 51
14.44	Pinhole effective areas; Shell 6N at Cu-K α	14 - 52
14.45	Pinhole effective areas; Shell 6B at Cu-K α	14 - 53
14.46	Pinhole effective areas; Shell 6S at Cu-K α	14 - 54
14.47	Pinhole effective areas; Shell 6B at C-K α (transverse scans)	14 - 56

14.48	Pinhole effective areas. Left: 1 mm pinhole scan, Shell 3B at Al-K α .	
	Right: 4 mm pinhole scan, Shell 3B at Al-K α . These 3B Y–scans were	
	performed in order to correct the in-plane 4N4S and 6N6S scans which	
	were made with the 3B shutter stuck open. (<i>transverse scans</i>)	14 - 57
14.49	Pinhole effective areas; Shell 4NS at Al-K α .	14 - 59
14.50	Pinhole effective areas; Shell 6NS at Al-K α	14 - 60
15.1	Shell 1T: Al-K α surface brightness, towards and away from the optic	15 - 7
15.2	Shell 1N: Al-K α surface brightness, towards and away from the optic	15 - 8
15.2	Shell 1B: Al-K α surface brightness, towards and away from the optic	15 - 9
15.0	Shell 1S: Al-K α surface brightness, towards and away from the optic	15 - 10
15.5	Shell 1T: Ti-K α surface brightness, towards and away from the optic	15 - 11
15.6	Shell 1N: Ti-K α surface brightness, towards and away from the optic Shell 1N: Ti-K α surface brightness towards and away from the optic	15 - 12
15.0 15.7	Shell 1B: Ti-K α surface brightness, towards and away from the optic	10 12 15 - 13
15.8	Shell 1S: Ti Ko surface brightness, towards and away from the optic	10 10 10 10 15 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10
15.0	Shell 3T: Al Ke surface brightness, towards and away from the optic	15 - 17
15.9 15.10	Shell 2N: Al Ke surface brightness, towards and away from the optic	10 - 17 15 19
15.10 15.11	Shell 2D. Al Key surface brightness, towards and away from the optic \ldots .	10 - 10 15 10
15.11	Shell 25. Al K α surface brightness, towards and away from the optic \ldots	10 - 19 15 - 20
15.12	Shell 35: Al-K α surface originates, towards and away from the optic	10 - 20
15.13	Shell 35: 11-K α surface brightness, towards and away from the optic	10 - 21
15.14	Shell 35: Cr-K α surface brightness, towards and away from the optic	15 - 22
15.15	Shell 31: Fe-K α surface brightness, towards and away from the optic	15 - 23
15.16	Shell 3N: Fe-K α surface brightness, towards and away from the optic	15 - 24
15.17	Shell 3B: Fe-K α surface brightness, towards and away from the optic	15 - 25
15.18	Shell 3S: Fe-K α surface brightness, towards and away from the optic	15 - 26
15.19	Shell 4T: Al-K α surface brightness, towards and away from the optic	15 - 29
15.20	Shell 4N: Al-K α surface brightness, towards and away from the optic \ldots	15 - 30
15.21	Shell 4B: Al-K α surface brightness, towards and away from the optic \ldots	15 - 31
15.22	Shell 4S: Al-K α surface brightness, towards and away from the optic \ldots	15 - 32
15.23	Shell 4S: Ti-K α surface brightness, towards and away from the optic \ldots	15 - 33
15.24	Shell 4S: Cr-K α surface brightness, towards and away from the optic	15 - 34
15.25	Shell 4T: Fe-K α surface brightness, towards and away from the optic	15 - 35
15.26	Shell 4N: Fe-K α surface brightness, towards and away from the optic	15 - 36
15.27	Shell 4B: Fe-K α surface brightness, towards and away from the optic	15 - 37
15.28	Shell 4S: Fe-K α surface brightness, towards and away from the optic \ldots	15 - 38
15.29	Shell 4S: Cu-K α surface brightness, towards and away from the optic	15 - 39
15.30	Shell 6B: C-K α surface brightness, towards and away from the optic \ldots	15 - 42
15.31	Shell 6T: Al-K α surface brightness, towards and away from the optic	15 - 43
15.32	Shell 6N: Al-K α surface brightness, towards and away from the optic \ldots	15 - 44
15.33	Shell 6B: Al-K α surface brightness, towards and away from the optic \ldots	15 - 45
15.34	Shell 6S: Al-K α surface brightness, towards and away from the optic \ldots	15 - 46
15.35	Shell 6S: Ti-K α surface brightness, towards and away from the optic \ldots	15 - 47
15.36	Shell 6S: Cr-K α surface brightness, towards and away from the optic	15 - 48
15.37	Shell 6T: Fe-K α surface brightness, towards and away from the optic	15 - 49
15.38	Shell 6N: Fe-K α surface brightness, towards and away from the optic	15 - 50
15.39	Shell 6B: Fe-K α surface brightness, towards and away from the optic	15 - 51
15.40	Shell 6S: Fe-K α surface brightness, towards and away from the optic \ldots	15 - 52
15.41	Shell 6T: Cu-K α surface brightness, towards and away from the optic	15 - 53

15.42	Shell 6N: Cu-K α surface brightness, towards and away from the optic \ldots	15 - 54
15.43	Shell 6B: Cu-K α surface brightness, towards and away from the optic	15 - 55
15.44	Shell 65: Cu-K α surface brightness, towards and away from the optic	15 - 50
15.45	Double quadrant wing scan surface brightness: Al-K α . Top: Shell 4,	15 50
15 40	N and S quadrant. Bottom: Shell 6, N and S quadrant.	15 - 58
15.46	Out-of-plane scans, compared to in-plane scans. Top left: 6B Y scan at	
	C-K α (out of plane). Top right: 6B Z scan at C-K α (in plane, towards	
	optic). Bottom left: 3B Y scan at Al-K α (out of plane). Bottom right:	15 50
1 - 4 -	$3B \Sigma$ scan at AI-K α (in plane)	15 - 59
15.47	Surface Brightness vs. Radius for Shell 15 at 11 K- α	15 - 60
15.48	Shell 11: $2W_1$ profiles, towards and away from the optic. ARCF data (<i>sim</i>)	15 62
15 40	(<i>strf</i>) vs. Taytrace data (<i>stm</i>)	10 - 00
15.49	(mef) as resiting data (sim)	15 64
15 50	(<i>strf</i>) vs. Taytrace data (<i>stm</i>)	10 - 04
10.00	(mef) as restrate data (sim)	15 65
15 51	(<i>strf</i>) vs. Taytrace data (<i>stm</i>)	10 - 00
10.01	Shell 15. $2W_1$ promes, towards and away nom the optic. After data (<i>sim</i>)	15 - 66
15 59	Shell 3T: 2W, profiles towards and away from the optic XRCE data	10 - 00
10.02	(<i>cref</i>) we rearrange data (<i>sim</i>)	15 - 68
15 53	Shell 3N: 2W, profiles, towards and away from the optic, XRCE data	10 - 08
10.00	(<i>rref</i>) we restrace data (<i>sim</i>)	15 - 60
15 54	Shell 3B: 2W, profiles towards and away from the optic XRCE data	10 - 09
10.04	She $3D$. $2W_1$ promes, towards and away nom the optic. After data $(rref)$ we restrace data (sim)	15 - 70
15 55	Shell 3S: 2W ₁ profiles towards and away from the optic XRCE data	10 10
10.00	She $55.2W_1$ promes, towards and away nom the optic. After data $(rref)$ we restrace data (sim)	15 - 71
15 56	Shell ΔT : 2W ₁ profiles towards and away from the optic XRCE data	10 11
10.00	(<i>rref</i>) vs ravtrace data (<i>sim</i>)	15 - 73
15.57	Shell $4N$: $2W_1$ profiles towards and away from the optic XRCF data	10 10
10.01	(<i>rrcf</i>) vs. raytrace data (<i>sim</i>).	15 - 74
15.58	Shell 4B: $2W_1$ profiles, towards and away from the optic. XRCF data	
	(xrcf) vs. ravtrace data (sim)	15 - 75
15.59	Shell 4S: $2W_1$ profiles, towards and away from the optic. XRCF data	
	(xrcf) vs. ravtrace data (sim)	15 - 76
15.60	Shell 6T: $2W_1$ profiles, towards and away from the optic. XRCF data	
	(xref) vs. raytrace data (sim)	15 - 78
15.61	Shell 6N: $2W_1$ profiles, towards and away from the optic. XRCF data	
	(xrcf) vs. raytrace data (sim)	15 - 79
15.62	Shell 6B: $2W_1$ profiles, towards and away from the optic. XRCF data	
	(xrcf) vs. raytrace data (sim)	15 - 80
15.63	Shell 6S: $2W_1$ profiles, towards and away from the optic. XRCF data	
	(xref) vs. raytrace data (sim)	15 - 81
15.64	Double quadrant wing scans. Top: Shell 4 N and S quadrants: $2W_1$	
	profiles. Bottom: Shell 4 N and S quadrants: $2W_1$ profiles. XRCF	
	data $(xrcf)$ vs. raytrace data (sim)	15 - 83
10.1		10 0
10.1	On-axis Full-HRMA Cu L- and K- α and Cr K- α Encircled Energy	10 - 2
16.2	On-axis Carbon and Aluminum K- α Encircled Energy	10 - 3

16.3	On-axis Titanium and Iron K- α Encircled Energy $\ldots \ldots \ldots \ldots \ldots \ldots$	16 - 4
16.4	Encircled Energy Fractions at 0.277 keV	16 - 5
16.5	Encircled Energy Fractions at 1.486 keV	16 - 6
16.6	Encircled Energy Fractions at 4.51 keV	16 - 7
16.7	Encircled Energy Fractions at 6.4 keV	16 - 8
16.8	HRMA Encircled Energy Fractions	16 - 9
18.1	HRMA ring focus HSI image. Date: 1996/12/23	18 - 9
18.2	HRMA ring focus HSI image. Date: 1997/01/10	18 - 10
18.3	HRMA ring focus HSI image. Date: 1997/01/15	18 - 11
18.4	HRMA ring focus HSI image. Date: 1997/01/24	18 - 12
18.5	HRMA ring focus HSI image. Date: 1997/02/10	18 - 13
18.6	HRMA ring focus HRC image. Date: $1997/04/10$	18 - 14
18.7	Radial profiles for ring 4. Date: $1997/01/24$	18 - 15
18.8	Radial profiles for ring 4. Date: $1997/01/24$	18 - 16
18.9	Radial profiles for ring 1. Date: $1997/01/24$	18 - 17
18.10	Radial profiles for ring 1. Date: $1997/01/24$	18 - 18
18.11	Ring width RMS for ring 1. Date: $1997/01/24$	18 - 19
18.12	Ring width RMS for ring 3. Date: $1997/01/24$	18 - 20
18.13	Ring width RMS for ring 4. Date: $1997/01/24$	18 - 21
18.14	Ring width RMS for ring 6. Date: $1997/01/24$	18 - 22
18.15	The Ring width RMS for ring 1, from all six ring focus measurements	18 - 23
18.16	The Ring width RMS for ring 3, from all six ring focus measurements	18 - 24
18.17	The Ring width RMS for ring 4, from all six ring focus measurements	18 - 25
18.18	The Ring width RMS for ring 6, from all six ring focus measurements	18 - 26
18.19	HRMA ring focus model with -0.5% epoxy strain	18 - 27
18.20	HRMA ring focus model: Ring 1, Al-K source, no gravity, no epoxy strain.	18 - 28
18.21	HRMA ring focus model: Ring 1, Al-K source, with gravity, no epoxy strain.	18 - 29
18.22	HRMA ring focus model: Ring 1, Al-K source, with gravity and epoxy	
	strain change	18 - 30
18.23	The Ring width RMS for ring 1, from three ring focus measurements	18 - 31
18.24	The Ring width RMS for ring 3, from three ring focus measurements	18 - 32
18.25	The Ring width RMS for ring 4, from three ring focus measurements	18 - 33
18.26	The Ring width RMS for ring 6, from three ring focus measurements	18 - 34
18.27	HRMA ring focus Data: Ring 1, Al-K source, data of $1996/12/23$ and	
	$1997/02/10 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	18 - 35
18.28	HRMA ring focus Data: Ring 3, Al-K source, data of $1996/12/23$ and	
	$1997/02/10 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	18 - 36
18.29	HRMA ring focus Data: Ring 4, Al-K source, data of $1996/12/23$ and	
	1997/02/10	18 - 37
18.30	HRMA ring focus Data: Ring 6, Al-K source, data of $1996/12/23$ and	
	1997/02/10	18 - 38
18.31	HRMA ring focus Data: Ring 1, Al-K source, data of 1997/02/10 and	
	1997/04/10	18 - 39
18.32	HRMA ring focus Data: Ring 3, Al-K source, data of $1997/02/10$ and	
	1997/04/10	18 - 40
18.33	HRMA ring focus Data: Ring 4, Al-K source, data of $1997/02/10$ and	
	1997/04/10	18 - 41

18.34	HRMA ring focus Data: Ring 6, Al-K source, data of 1997/02/10 and	10 10
10.95	$1997/04/10 \qquad \qquad$	18 - 42
18.35	HRMA ring focus model: Ring 1, Al-K source, epoxy strain with 0.0%	10 49
	and -0.3% moist and their difference.	18 - 43
20.1	Schematic of single-reflection ghosts	20 - 2
20.2	Schematic diagram of single-reflection ghosts.	20 - 3
20.3	Ghost imaging	20 - 4
20.4	Ghost baffles for Wolter type I optics.	20 - 5
20.5	Ghost baffles for Wolter type I optics.	20 - 6
20.6	Ghost baffles for Wolter type I optics.	20 - 7
20.7	Off-axis image with ghosts	20 - 8
20.8	HSI images of ghosts at 25' off-axis	20 - 9
20.9	Ghosts at 30' off-axis	20 - 10
20.10	Off-axis angle determination using ghosts.	20 - 11
20.11	Off-axis angle determination	20 - 12
21.1	The two "mesh plane" HSI images	21 - 2
21.2	Comparing the SAO and the EKC 1G mechanical models	21 - 6
21.3	Division of hsi111803i0 image into annuli.	21 - 7
21.4	Raytraces for individual HRMA shells at the "mesh plane".	21 - 8
21.5	Ring radius for individual shells.	21 - 9
21.6	Raytraces with varying Y-tilts compared to hsi111803 image	21 - 10
21.7	Raytraces with varying Z-tilts compared to hsi111803 image	21 - 11
21.8	Comparison of XRCF mesh plane HSI image and raytrace simulations	21 - 12
22.1		22 2
22.1	Off-axis images: 5' C-K α , 5' Ti-K α	22 - 3
22.2	Off-axis images: 5' Fe-K α , 10' C-K α	22 - 4
22.3	Off-axis images: 10' Ti-K α , 10' Fe-K α	22 - 5
22.4	Off-axis images: 15' C-K α , 15' Ti-K α	22 - 6
22.5	Off-axis images: 15' Fe-K α , 20' C-K α .	22 - 7
22.6	Off-axis images: 20' Ti-K α , 20' Fe-K α	22 - 8
22.7	Off-axis images: 25' C-K α , 25' Ti-K α .	22 - 9
22.8	Off-axis images: 25' Fe-K α , 30' C-K α .	22 - 10
22.9	Off-axis images: 30' Ti-K α , 30' Fe-K α	22 - 11
22.10	Off-axis images: $30'$ Fe-K α .	22 - 12
22.11	Single shell off-axis images: 15'	22 - 14
22.12	Single shell off-axis images: 15'	22 - 15
22.13	Single shell off-axis images: $20'$	22 - 16
22.14	Single shell off-axis images: $20'$	22 - 17
22.15	Single shell off-axis images: 24'	22 - 18
22.16	Single shell off-axis images: 24'	22 - 19
24.1	foc hn Scan Pattern with a Polynomial Fit to Normalized Count Bates	24 - 2
24.1 24.2	for 5 Scan Pattern with Polynomial Fit to Normalized Count Rates	24 2 24 - 3
24.2	Variation in fit and data points as a function of azimuth for mirror Shell 1	24 - 3 24 - 4
24.9 94 /	Variation in fit and data points as a function of azimuth for mirror	<u>4</u> 1 1
2 7.1	Shells 3 and 4	24 - 5
24 5	Variation in fit and data points as a function of azimuth for mirror Shell 6	$\frac{24}{24} = 5$
41.0	variation in ne and data points as a function of azimuth for mittor Shell 0.	27 J

25.1	D-IXH-RF-17.001, 108945, Shell 1 TB, 200 sec.	25 - 4
25.2	D-IXH-RF-17.002, 108946, Shell 1 NS, 200 sec.	25 - 4
25.3	D-IXH-RF-17.003, 108947, Shell 3 TB, 200 sec.	25 - 4
25.4	D-IXH-RF-17.004, 108948, Shell 3 NS, 300 sec.	25 - 4
25.5	D-IXH-RF-17.005, 108949, Shell 4 TB, 360 sec.	25 - 5
25.6	D-IXH-RF-17.006, 108951, Shell 4 NS, 360 sec.	25 - 5
25.7	D-IXH-BF-17 007 108953 Shell 6 TB 600 sec	25 - 5
25.8	D-IXH-BE-17 008 108954 Shell 6 NS 600 sec	$\frac{10}{25} - 5$
25.0	$108045 \text{ fr} 108046 \text{ Shell } 1 200 \pm 200 \text{ sec}$	20 - 6
25.5	$100949 \& 100940$, Shell 1, 200 ± 200 sec	20 0 25 6
25.10	$108947 \& 108946$, Shell $4, 260 \pm 260$ and	20 - 0
20.11	$108949 \otimes 108951$, Shell 4, $500 + 500$ sec	20 = 0
25.12	108953 & 108954, Snell 6, 600 + 600 sec	25 - 6
25.13	The HRMA ring focus shutter test results. Shell 1	25 - 7
25.14	The HRMA ring focus shutter results. Shell 3	25 - 8
25.15	The HRMA ring focus shutter results. Shell 4	25 - 9
25.16	The HRMA ring focus shutter results. Shell 6	25 - 10
0.0.1		26 2
26.1	HRMA Focus Data	26 - 2
26.2	HRMA Focus History	26 - 3
97 1	Schematic diagram of HATS double pass configurations	97 - 9
21.1	Schematic diagram of HATS double-pass configurations	ZI = Z
28.1	Schematic of coma circle (2θ) distortion	28 - 2
20.1		
29.1	Measured vs. Simulated Off-Axis Focus Data	29 - 4
30.1	Off-axis images for individual shells; pitch = $-10.61'$, yaw = $10.61'$	30 - 3
30.2	pitch = $0'$, yaw = $-20'$	30 - 4
30.3	pitch = $16.42'$, yaw = $17.68'$	30 - 5
30.4	Variation of off-axis image with angle between source and decenter	
	direction. Shell 3, pitch = $16.42'$, yaw = $17.68'$.	30 - 8
30.5	Variation of off-axis image with angle between source and decenter	
	direction. Shell 3. pitch = $16.42'$, vaw = $17.68'$.	30 - 9
30.6	Schematic diagram of pincushion measurement	30 - 11
30.7	Off-axis images (Shell 1: pitch $-0'$ yaw $-20'$)	30 - 12
30.8	Off-axis images (Shell 1; pitch = 0', yaw = $20'$).	30 - 13
20.0	Core pineughions of off avis images for individual shells, pitch $= 0'$	30 - 13
30.9	Core plucusions of on-axis images for individual shens; pitch = 0 ,	20 14
90.10	$y_{aw} = -20$	30 - 14
30.10	Core pincushions of off-axis images for individual shells based on cur-	00 15
~~ · ·	rent SAO raytrace model; pitch = 0', yaw = $-20'$	30 - 15
30.11	Off-axis images for individual shells; pitch = $-10.61'$, yaw = $10.61'$	30 - 17
30.12	Off-axis images for individual shells; pitch = $0'$, yaw = $-20'$	30 - 18
30.13	Off-axis images for individual shells; pitch = $16.42'$, yaw = $17.68'$	30 - 19
D 1		D 0
В.1	Relations between HATS tower, ARCF, and SAUsac coordinates	В – 2 В – 2
В.2	Schematic of XRCF coordinate and rotation conventions	B - 3
F 1	Schematic of relevant HBMA assemblies	FО
Е.1 Е 9	UDMA Avial Datum Leastians	E = 2
$\mathbf{E}.Z$		E = 3

E.3	Schematic of the P6 Ghost Baffle	E-5
E.4	Schematic of the Forward HRMA Structure	E-6
E.5	Schematic of the Thermal Precollimator	$\mathrm{E}-8$
E.6	Schematic of the Aft HRMA Structure	E-9
E.7	Schematic of HRMA mirror positions.	$\mathrm{E}-11$
E.8	EKC Solid Model of Fiducial Transfer System Periscope	E-23
E.9	Clocking angle for the FTS Periscope	E-23
E.10	EKC, SAOsac, and DPSAOsac optic clocking conventions	$\mathrm{E}-27$

List of Tables

3.1	Summary of the FPC calibration program	3-2
3.2	Focal plane aperture sizes	3 - 4
3.3	Blocking plate aperture sizes for reference detectors	3 - 6
3.4	Differences among test environments	3 - 18
3.5	Relative QE for FPC detectors to fpc_hn	3 - 29
3.6	Relative QE for FPCs to fpc_5	3 - 30
3.7	Relative QE for FPCs to fpc_x1	3 - 30
3.8	Relative QE for fpc_5 to fpc_hn $\ldots \ldots \ldots$	3 - 30
3.9	QE Corrections for gas opacity effects	3 - 32
3.10	Absolute QE for fpc_x2 and fpc_hn	3 - 36
3.10	Absolute QE for fpc_x2 and fpc_hn (continued) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	3 - 37
3.11	Absolute QE for fpc_ht, fpc_hb, and fpc_hs	3 - 38
3.12	Absolute QE for fpc_5	3 - 38
4.1	Fitted energy, rising (low-energy) tail and shelf parameters for ssd_x.	4 - 8
4.2	Fitted escape and fluorescent line parameters for ssd_x .	4-9
4.3	Fitted energy, rising (low-energy) tail and shelf parameters for ssd_5	4 - 10
4.4	Fitted escape and fluorescent line parameters for ssd_5	4 - 11
4.5	Detector resolution parameters: Fano factor and electronic broaden-	
	ing	4 - 12
4.6	Energy scale parameters for each phase of SSD use	4 - 14
4.7	Measured and fitted QE values for ssd_{-5} from SX700 data. \ldots	4 - 23
4.8	Measured and fitted QE values for ssd_{\prec} from SX700 data. \ldots	4 - 24
4.9	Thickness of fitted window material for ssd_5 and $ssd_x.$	4 - 25
4.10	Thicknesses of SSD Al filter material, measured at NSLS	4 - 41
4.11	Fitting parameters for ssd_5 white beam run, all energies, no Al filter	4 - 43
4.12	Fitting parameters for ${\sf ssd_5}$ white beam run, only high energy, no Al filter	4 - 44
4.13	Fitting parameters for ssd_x white beam, all energies, no Al filter	4 - 47
4.14	Fitting parameters for ssd_x white beam, only high energies, no Al filter	4 - 48
4.15	Fitting parameters for ssd_5 white beam, all energies with 27.4 μm Al filter	4 - 50
4.16	Fitting parameters for ssd_5 white beam, Higher energies with 27.4 $\mu \rm{m}$	
	Al filter	4 - 51
4.17	Fitting parameters for ssd_x white beam, all energies with 27.4 μm Al filter	4 - 53

4.18	Fitting parameters for ssd_x white beam, higher energies with 27.4 μm	
	Al filter	4 - 54
4.19	Fitting parameters for ssd_5 white beam, all energies with 133.4 μ m Al filter.	4 - 57
4.20	Fitting parameters for ssd_5 white beam, higher energies with 133.4 μ m	
	Al filter.	4 - 58
4.21	Fitting parameters for ssd x white beam, all energies with 133.4 μ m Al filter.	4 - 60
4.22	Fitting parameters for ssd_x white beam, higher energies with 133.4.4 μ m	4 01
4.00	Al filter.	4 - 61
4.23	Summary of white beam normalization runs. See text for explanation	4 - 62
4.24	BESSY ssd_x uniformity scan	4 - 63
6.1	HXDS FPC-X2 Mesh Scans	6 - 3
6.2	HXDS FPC-X2 Mesh Center Positions	6 - 3
6.3	XRCF HRMA Effective Area Measurements FPC Window Mesh Corrections	6 - 16
6.4	XRCF HRMA Effective Area Measurements FPC Window Mesh Corrections	6 - 17
6.5	XRCF HRMA Effective Area Measurements FPC Window Mesh Corrections	6 - 18
6.6	XRCF HRMA Effective Area Measurements FPC Window Mesh Corrections	6 - 19
6.7	XRCF HRMA Effective Area Measurements FPC Window Mesh Corrections	6 - 20
0.1		0 20
7.1	Image event rate dead-time percentages	7 - 10
8.1	Sample stagelog entry	8 - 3
8.2	Sample section from the FOA table	$\frac{8}{8} - 4$
8.3	Master table (left) and aperture size table (right) for the HXDA FPC	0 1
0.0	detectors	8 – 6
8 /	Master table (left) and aperture size table (center) for scd x, and aper	0 0
0.4	ture size table for $\operatorname{scd} F$ (right)	8 7
85	Master table for hei	3 - 7 8 - 7
0.0		0 - 1
9.1	Parameters for the \texttt{JMKmod} model, with recommended values	9 - 3
11.1	HRMA On-axis Effective Area Measurements	11 - 3
11.2	HRMA Off-axis Effective Area Measurements	11 - 8
11.3	X-ray Lines atop the C-continuum	11 - 27
11.4	SSD Energy Scale	11 - 32
11.5	SSD-500 Icing Data	11 - 39
11.6	Effective Area Measurements SSD Pulser Deadtime Corrections	11 - 48
11.7	XRCF HRMA Effective Area within 2 mm Aperture. Units: cm^2	11 - 71
11.7	XRCF HRMA Effective Area within 2 mm Aperture Units: cm^2 (continued)	11 - 72
11.8	XRCF HRMA Effective Area within 35 mm Aperture Units: cm ²	11 - 73
11.8	XRCF HRMA Effective Area within 35 mm Aperture Units: cm^2 (continued)	11 - 74
11.0	XRCF HRMA Effective Area within 2π Steradian Units: cm ²	11 - 75
11.0	XRCF HRMA Effective Area within 2π Steradian. Units, cm ² (continued)	11 - 76
11.9 11.10	On-orbit HRMA Effective Area within 2 mm Diameter Units: cm ²	11 - 81
11.10	On-orbit HRMA Effective Area within 2 mm Diameter. Units: cm ² (continued)	11 - 89
11.10	On orbit HDMA Effective Area within 25 mm Diameter. Units. Chi (continued)	11 = 02 11 09
11.11	On orbit HDMA Effective Area within 25 mm Diameter. Units: cm ⁻	11 - 93
11.11	Un-orbit intwise Elective Area within 55 min Diameter. Units: Cin- (COn-	11 01
11 10	United)	11 - 84
11.12	On-orbit network effective Area within 2π Steradian. Units: cm ⁻	11 - 90

11.12	On-orbit HRMA Effective Area within 2π Steradian. Units: cm ² (continued)	11 - 86
12.1 12.2 12.3	Encircled Energy tests analyzed for the HRMA effective area	$egin{array}{c} 12-2\ 12-3\ 12-6 \end{array}$
12.4	Effective Area results for 2 mm apertures	12 - 9
$13.1 \\ 13.2 \\ 13.3 \\ 13.4 \\ 13.5$	Shells 1, 3, 4, and 6 reduced χ^2 and σ	13 - 8 13 - 34 13 - 34 13 - 34 13 - 34
14.1 14.2 14.3 14.4	XRCF Single Quadrant Wing Scan Measurements (by shell)	14 - 2 14 - 3 14 - 3 14 - 4
$15.1 \\ 15.2$	Wing scan shutter vignetting cutoffs	$egin{array}{c} 15-4\ 15-6 \end{array}$
$15.3 \\ 15.4$	Surface brightness fits (Raytrace, Shell 3)	15 - 15 15 - 16
15.1 15.5	Surface brightness fits (raytrace, Shell 4).	15 - 27 15 - 27
$15.0 \\ 15.7$	Surface brightness fits (raytrace, Shell 6).	15 - 28 15 - 40
15.8 15.9	Surface brightness fits (XRCF data, Shell 6).	15 - 41 15 - 57
15.10 15.11	Surface brightness fits (double quadrant scans, 4145 Surface brightness fits (double quadrant scans, $6N6S$ Single quadrant wingscan $2W_1$ fits and mean square roughness (Bay-	15 - 57 15 - 57
15.12	trace simulation and XRCF data, Shell 1) $\dots \dots \dots$	15 - 62
15.13	trace simulation and XRCF data, Shell 3)	15-67
15.14	trace simulation and XRCF data, Shell 4) $\dots \dots \dots$	15 - 72
15.15	trace simulation and XRCF data, Shell 6)	15 - 77
15.10	trace simulation and XRCF data, Shell 4NS)	15 - 82
15.10	bouble quadrant wingscan $2W_1$ fits and mean square roughness (Ray- trace simulation and XRCF data, Shell 6NS) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	15 - 82
18.1	HRMA Ring Focus Measurement data	18 - 2
20.1	Phase 1 Off-Axis Images with P6 or H6 ghosts	20 - 7
21.1 21.2 21.3	Mesh Plane HSI images Focus distance from CAP Datum $-A-$ plane for EIPS $Al-K\alpha$ source Vertical/Horizontal ratios for meshplane HSI image	21 - 2 21 - 3 21 - 3

21.4 21.5	Parameters for the quasi-elliptical annuli used to split apart the hsi111803i0 image	21-4 21-4
22.1	Phase 1 Off-Axis Images (Full HRMA)	22 - 2
24.1	Fit Results for all EIPS BU Tests.	24 - 6
25.1	HRMA Ring Focus Shutter Test Data	25 - 2
$26.1 \\ 26.2 \\ 26.3 \\ 26.4 \\ 26.5 \\ 26.6 \\ 26.7 \\$	Best Estimate of XRCF Measured Focus of Shells, relative to Shell 3Comparison of pre-XRCF Predictions of On-orbit and XRCF HRMA fociAs Measured Optic lengths and distancesFinal Mirror Focal Positions at XRCF and on orbitTest Data for HRMA Focus Tests: D-66 SeriesTest Data for HRMA Focus Tests: D-67 SeriesTest Data for HRMA Focus Tests: E-67 (Final) Series	$\begin{array}{r} 26-2\\ 26-4\\ 26-5\\ 26-5\\ 26-6\\ 26-8\\ 26-9\\ \end{array}$
27.1 27.2 27.3 27.4 27.5 27.6	HATS Fourier Coefficients (ATP augmented data set)HATS ATP (Augmented) DataHATS Fourier CoefficientsHATS Fourier Coefficients: r^2 -weighted Q_0 removedConversion to Lateral Parfocalization and ComaSummary:HRMA Lateral Parfocalization and On-Axis Coma (SAOsac	27 - 2 27 - 3 27 - 4 27 - 4 27 - 5
27.7 27.8 27.9 27.10 27.11 27.12	coordinates)	$\begin{array}{c} 27-5\\ 27-6\\ 27-6\\ 27-7\\ 27-7\\ 27-8\\$
27.13 28.1 28.2	Fourier Coefficients: HATS vs. raytrace HRMA Tilt Angles Summary of HRMA Tilt Angles	27 - 9 28 - 3 28 - 4
29.1 29.2 29.3 29.4	Offset from on-axis focus (mm), + towards HRMAHXDS FOA Values During Off-Axis TestsHSI PrimeX Values for Best On-Axis FocusOff-Axis Focus Test Data	29 - 1 29 - 1 29 - 2 29 - 3
$30.1 \\ 30.2 \\ 30.3$	Phase 1 Off-Axis Images (Full HRMA)	${30-6}\ {30-7}\ {30-16}$
A.1 A.2 A.3	HXDS detector locations in XRCF testing phases	$egin{array}{c} \mathrm{A}-1\ \mathrm{A}-2\ \mathrm{A}-2\ \mathrm{A}-2 \end{array}$

B.1 B.2	Relations between coordinate systems	${ m B}-3 \ { m B}-4$
C.1	Quadrant Shutter Nomenclature	C - 1
D.1	IAP table	D-4
E.1	Baffle plate information	E-4
E.2	FHS baffle plate axial positions	$\mathrm{E}-7$
E.3	FHP as-built axial position vs. design.	$\mathrm{E}-7$
E.4	Precollimator baffle plate axial positions	E - 10
E.5	Precollimator as-built baffle plate axial positions vs. design	$\mathrm{E}-12$
E.6	AHS baffle plate axial information	$\mathrm{E}-12$
E.7	AHS baffle plate axial positions	$\mathrm{E}-12$
E.8	Aft HRMA Structure as-built baffle plate axial positions vs. design	E - 13
E.9	HRMA Mirrors: axial locations with respect to the CAP.	E-14
E.10	AXAF element interface data, Reid (1997)	E-15
E.11	HRMA P Mirrors: key axial locations	E-15
E.12	HRMA H Mirrors: key axial locations	E-16
E.13	Baffle and Obstruction tables	E-16
E.14	Raytrace and EKC baffle nomenclature	$\mathrm{E}-17$
E.15	Precollimator and Forward Hrma Structure Baffle Data; Shell 1	$\mathrm{E}-18$
E.16	Precollimator and Forward Hrma Structure Baffle Data; Shell 3	$\mathrm{E}-18$
E.17	Precollimator and Forward Hrma Structure Baffle Data; Shell 4	E-19
E.18	Precollimator and Forward Hrma Structure Baffle Data; Shell 6	E-19
E.19	Aft Hrma Structure Baffle Data; Shell 1	E-20
E.20	Aft Hrma Structure Baffle Data; Shell 3	E-20
E.21	Aft Hrma Structure Baffle Data; Shell 4	E-21
E.22	Aft Hrma Structure Baffle Data; Shell 6	E-21
E.23	CAP Ghost Baffle Data.	E-22
E.24	P6 Ghost Baffle Data.	E-22
E.25	FTS Periscope Data.	E-24
E.26	AXAF element axial data	E-25
E.27	HRMA Optic Prescription (including end cut) for ideal optics	E-26
E.28	Mirror clocking data	E-27