- 28

HRMA Tilts at XRCF

William Podgorski

In this section we discuss HRMA rigid body misalignments (relative P-H tilt and decenter). Data is presented from the optical alignments at Kodak, from the XRCF calibration and from various analyses.

Relative rigid body misalignments of the P to H optics in either decenter or tilt cause a comatic image distortion in the focal plane. This distortion is a "coma circle" in which the position of the rays in the coma circle moves around the circle twice as the input ray bundle (to the shell) varies once around the shell input aperture. Figure 28.1 illustrates this. The coma circle diameter in the focal plane is related to the P-H decenter and tilt angle as follows:

	$1^{\prime \prime} \mathrm{P}-\mathrm{H}$ tilt	1 mm P-H decenter
Coma circle radius $\left({ }^{\prime \prime}\right)$	1	10
Coma circle radius $(\mu \mathrm{m})$	48.5	488

28.1 Coordinate Systems and tilt angles

Since tilt and decenter both produce coma in the image plane we will interpret this coma as a tilt of the H optic relative to the P optic. Three different coordinate systems and sets of tilt angles have been used (see also Chapter B and Figure B.1):

- HRMA Coordinates $\left(\theta_{Y}, \theta_{Z}\right)$
- SAOsac Raytrace Coordinates (azmis, elmis)
- XRCF Coordinates $\left(\right.$ tilt $_{Y}$, tilt $\left._{Z}\right)$

The tilt angles are interpreted as a rotation of the H optic about a given coordinate axis, relative to the perfectly aligned P optic. The rotation axes are as follows (again see Figure B.1);

Coordinates	H Angle	Rotation axis
HRMA	θ_{Y}	+Y-HRMA
	θ_{Z}	+Z-HRMA
SAOSAC	azmis	+Y-OSAC
	elmis	-X-OSAC
XRCF	tilt $_{Y}$	+Y-XRCF
	tilt $_{Z}$	+Z-XRCF

Figure 28.1: Schematic of coma circle (2 2θ) image distortion. The limaçon is the pattern of the photons at the focal surface. The angles refer to the azimuth of the optic at which the photons were reflected.

Tilt angle relationships:

$$
\begin{aligned}
\text { azmis } & =-\theta_{Z}=+ \text { tilt }_{Z} \\
\text { elmis } & =-\theta_{Y}=+ \text { tilt }_{Y}
\end{aligned}
$$

Table 28.1 provides a summary of relative tilt angles (H with respect to P) for various conditions The four HRMA shells are given with the two tilt angles per shell. These angles are shown in terms of the XRCF angles, tilt $_{Y}$ and tilt $_{Z}$. The tilt angles as measured at Kodak by the HATS (in the final ATP measurements) are shown in line 1 . In lines 2 and 3 the XRCF 1 G corrections to the tilt angles are given for both SAO's FEA model and EKC's FEA model. Note that the corrections are about XRCF Y only, Y being the horizontal axis at XRCF. Lines 4 through 9 present various raytrace predictions of the tilt angles, based on various HRMA models and using a simulated quad shutter tilt calculation. The cases are defined as follows:

EKCHDOS04 Based on Kodak test data of $9 / 96$ with no decenter, full XRCF mirror maps (SAO)
EKCHDOS04_low Based on Kodak test data of $9 / 96$ with no decenter, mirror map includes only 3 term Legendre fit of surface (no 1G)

EKCHDOS04_low_off Based on Kodak test data of $9 / 96$ with no decenter, mirror map includes only 3 term Legendre fit of surface (no 1G), HRMA pointed 1^{\prime} off-axis in azimuth

EKCHDOS05 Based on Kodak ATP test data of $11 / 96$ with XRCF measured decenter, full XRCF mirror maps (SAO), axial spacing as in EKCHDOS04
EKCHDOS05_low Based on Kodak ATP test data of 11/96 with XRCF measured decenter, mirror map includes only 3 term Legendre fit of surface (no 1G)

EKCHDOS06 Based on Kodak ATP test data of $11 / 96$ with XRCF measured decenter, full XRCF mirror maps (SAO), axial spacing derived from XRCF measurements

EKCHDOS06_off Based on Kodak ATP test data of 11/96 with XRCF measured decenter, full XRCF mirror maps (SAO), axial spacing derived from XRCF measurements, HRMA pointed 1^{\prime} off-axis in azimuth

	Model	Shell 1		Shell 3		Shell 4		Shell 6	
		Y [${ }^{\prime \prime}$]	$\left.\mathrm{Z}{ }^{\text {['] }}\right]$	Y ["]	$\left.\mathrm{Z}{ }^{\prime \prime}{ }^{\prime \prime}\right]$	Y [${ }^{\prime \prime}$]	Z ["]	$\mathrm{Y}\left[{ }^{\prime \prime}\right]$	Z ['] $]$
1	Kodak ATP HATS	0.03	-0.09	-0.02	0.07	0.00	0.06	-0.03	0.32
2	XRCF 1G Corr(SAO)	-0.24	0.00	-0.08	0.00	-0.12	0.00	-0.12	0.00
3	XRCF 1G Corr(EKC)	-0.23	0.00	-0.18	0.00	-0.21	0.00	-0.33	0.00
4	EKCHDOS04	-0.19	-0.15	-0.08	0.03	-0.13	0.07	-0.29	0.27
5	EKCHDOS04_low	0.04	-0.11	-0.03	0.06	0.00	0.05	-0.09	0.27
6	EKCHDOS04_low_off	0.04	0.04	-0.03	0.23	0.00	0.23	-0.09	0.47
7	EKCHDOS05	-0.01	-0.03	0.13	0.11	0.05	0.15	-0.05	0.38
8	EKCHDOS05_low	0.20	0.00	0.18	0.14	0.17	0.13	0.15	0.39
9	EKCHDOS06	-0.01	-0.03	0.13	0.11	0.04	0.15	-0.05	0.38
10	EKCHDOS06_off	-0.01	0.12	0.12	0.29	0.05	0.34	-0.05	0.58
11	Measured 1/5-6/97 ${ }^{\dagger}$	-0.15	-0.14	-0.05	-0.06	-0.04	-0.08	-0.44	0.18
12	Measured 1/5-6/97	-0.17	-0.14	-0.07	-0.05	-0.05	-0.07		
13	Measured 2/7-8/97	-0.14	-0.02	-0.05	0.12	-0.04	0.04	-0.43	0.36
14	Kodak ATP+SAO XRCF	-0.21	-0.09	-0.10	0.07	-0.12	0.06	-0.15	0.32
15	Kodak ATP+EKC XRCF	-0.20	-0.09	-0.20	0.07	-0.12	0.06	-0.36	0.32

${ }^{\dagger}$ XRCF tilts measured 1^{\prime} off-axis in azimuth

Lines 11,12 and 13 give the measured XRCF tilt angles for 3 different cases, using the quad shutter calculations. Lines 11 and 12 present data from tests on $1 / 5 / 97$ and $1 / 6 / 97$, when the HRMA was 1^{\prime} off-axis in azimuth. The data in line 11 is the initial baseline tilt data from these tests. The data in line 12 is repeatability data in which the top quadrant was re-measured and used in conjunction with the initial data from the other three quadrants. The data in lines 11 and 12 should be the same. The data in line 13 is from the last series of focus/tilt measurements in Phase 1 (at $\mathrm{Al} \mathrm{K} \alpha$), taken on $2 / 7 / 97$ and $2 / 8 / 97$. An important difference between this data and the data taken in early January is that the HRMA was on-axis for the February data, but was $+1^{\prime}$ off-axis in azimuth when the January data was taken.

Lines 14 and 15 give the arithmetic sums of the Kodak ATP tilt angles plus the XRCF 1G tilts for the SAO model (line 14) and the EKC model (line 15).

28.2 Tilt Measurements

Examination of the measured tilt data in Table 28.1 (lines 11-13) shows excellent agreement for all of the tilt $_{Y}$ measurements, with a span of only $0.03^{\prime \prime}$ over all shells for the three sets of data. There are larger differences between the January and February data in tilt Z, however. The February data show, for all four shells, numerically larger values of ilt $_{Z}$, the differences ranging from about $0.10^{\prime \prime}$ to $0.20^{\prime \prime}$. This discrepancy is due to the difference in HRMA alignment, specifically the 1^{\prime} azimuth off-axis angle. Simulations show the same trend in tilt angles as the HRMA azimuth is varied. Comparison of raytrace cases EKCHDOSO4_low vs. EKCHDOSO4_low_off and EKCHDOSO6 vs. EKCHDOS06_off show that the till $_{Z}$ angles do increase as the HRMA azimuth is increased, by about the same amounts as seen in the measurements. In Table 28.2 the 1/5-6/97 data has been adjusted for the off-axis azimuth effect, line B, and compared with the 2/7-8/97 data, line C. The agreement is excellent, and we will therefore use the tilt values measured in $2 / 97$ as our reference measurement, with the HRMA at an on-axis condition.

28.5 Quad shutter tilt data from XRCF tests

28.5.1 Shell 1

			Shell /		Center $[\mu \mathrm{m}]$					
Runid	Date	TRW ID	Quad	Y	Z					
107656	$01 / 06 / 97$	D-IXF-P2-67.016	1T	-307159.66	10676.87					
107657	$01 / 06 / 97$	D-IXF-P2-67.017	1N	-307147.69	10683.71					
107659	$01 / 06 / 97$	D-IXF-P2-67.018	1B	-307152.50	10665.15					
107660	$01 / 06 / 97$	D-IXF-P2-67.019	1S	-307146.31	10677.72					
Yilt $=-0.153014$										

Y Tilt $=-0.153014$
Z Tilt $=-0.143143$

107663	$01 / 06 / 97$	D-IXF-P2-67.020	1T	-307159.59	10674.64
107657	$01 / 06 / 97$	D-IXF-P2-67.017	1N	-307147.69	10683.71
107659	$01 / 06 / 97$	D-IXF-P2-67.018	1B	-307152.50	10665.15
107660	$01 / 06 / 97$	D-IXF-P2-67.019	1S	-307146.31	10677.72
Y Tilt $=-0.170591$					
Z Tilt $=-0.143143$					
111470	$02 / 07 / 97$	E-IXF-P2-67.016	1T	-307110.59	10624.46
111471	$02 / 07 / 97$	E-IXF-P2-67.017	1N	-307102.25	10630.90
111474	$02 / 07 / 97$	E-IXF-P2-67.018	1B	-307109.31	10622.07
111475	$02 / 07 / 97$	E-IXF-P2-67.019	1S	-307115.00	10633.48

Y Tilt $=-0.140715$
Z Tilt $=-0.0209302$

28.5.2 Shell 3

			Shell /		Center $[\mu \mathrm{m}]$	
Runid	Date	TRW ID	Quad	Y	Z	
107637	$01 / 05 / 97$	D-IXF-P2-67.001	3T	-307167.59	10676.34	
107638	$01 / 05 / 97$	D-IXF-P2-67.002	3N	-307156.75	10688.66	
107639	$01 / 05 / 97$	D-IXF-P2-67.003	3B	-307150.00	10680.82	
107640	$01 / 05 / 97$	D-IXF-P2-67.004	3S	-307153.22	10674.62	

Y Tilt $=-0.0482356$
Z Tilt $=-0.0603847$

107641	$01 / 05 / 97$	D-IXF-P2-67.005	3 T	-307166.53	10674.11
107638	$01 / 05 / 97$	D-IXF-P2-67.002	3N	-307156.75	10688.66
107639	$01 / 05 / 97$	D-IXF-P2-67.003	3B	-307150.00	10680.82
107640	$01 / 05 / 97$	D-IXF-P2-67.004	3S	-307153.22	10674.62

Y Tilt $=-0.0658127$
Z Tilt $=-0.0517239$

111451	$02 / 07 / 97$	E-IXF-P2-67.001	3 T	-307116.59	10613.04
111452	$02 / 07 / 97$	E-IXF-P2-67.002	3 N	-307110.19	10634.03
111453	$02 / 07 / 97$	E-IXF-P2-67.003	3 B	-307112.28	10644.09
$111454+7^{\dagger}$	$02 / 07 / 97$	E-IXF-P2-67.004	3 S	-307134.19	10629.06

$$
\begin{aligned}
& \text { Y Tilt }=-0.0469876 \\
& \text { Z Tilt }=0.122213
\end{aligned}
$$

28.5.3 Shell 4

