Effective Area of the HRMA near the Ir M-V edge at 2.1 keV

Herman L. Marshall (MIT), Diab Jerius, Ping Zhao, Dick Edgar, Dale Graessle, Deron Pease, Terry Gaetz, and Jeremy Drake (SAO)
Effects of Pileup

Mk 421 LETGS (10/02) with new edges

- N_h: 2.115061×10^{20}
- A_1: 2.0493584
- Γ_1: 1.9017482
- A_2: 0.53020634
- Γ_2: 1.8563525

- τ_{C-K}: 2.0767686
- τ_{N-K}: -0.016886855
- τ_{O-K}: 0.033560230
- τ_{F-K}: 0.0073570022

Energy (keV) vs. Flux (ph/cm2/s/keV)
Pileup in Grating Spectra

- Pileup appears at Ir-M edge due to peak in effective area
- Rate (Rf) \(\sim 0.01 \) count/frame/column incur \(\sim 8\% \) loss
 - highly nonlinear effect — Rf = 0.1 gives x2.1 correction
- For Mk 421, Nf = 1.3e5, Rf = 0.05; jump = 19%
HETGS and LETGS Data

- Both in MEG and HEG
- Energy is 2.08 keV, same as Ir M-V edge
- Effect ~ 5-10%
Thin Overlayer on HRMA Changes Edge

- HRMA modeling with 10-15 Å of CH₂ enhances area above Ir M-V edge
- Enhancement reduced for shells 4 & 6 — reduced effect in HEG observed
- Thickness of layer is consistent with some pre-launch expectations
Summary

- Grating spectra indicate a $\sim 10\%$ correction is needed at the Ir-M edge
- HETGS and LETGS data agree on
 - location of the edge: 2.08 keV
 - the magnitude and shape of a deviation

- Current model is a 15-20 Å contamination layer (not related to ACIS contamination)
 - Layer gives the right magnitude at the Ir-M edge
 - Layer thickness is “reasonable”
 - Model predicts edge depth depends on shell, as observed by MEG and HEG
Planned Tasks

- Determine an ad hoc correction to HRMA model
- Combine more HETGS observations to get a better jump estimate, then fit for layer thickness
- Reevaluate contribution by pileup: estimated to be <3%
- Search for time dependence in HETGS data