Back-Illuminated ACIS QE Revised

- Grating & Cluster data want BI/FI ratio higher than CALDB
- Size of effect: ~ 10 − 15%
- wavelength dependent, especially notable for E < 1.5 keV.
- Astrophysical observations can't tell which is right.
- Absolute calibration from ground (XRCF) data settle the issue

Three effects:

- Dead area due to cosmic ray blooms: larger effect on FI than BI
- Mistake in BI QE model
- Misunderstanding of QE Uniformity factor definition

Nota Bene: This talk has nothing to do with contamination. We discuss the ACIS QE at the time of launch.

XRCF EXPERIMENTAL SETUP (SCHEMATIC)

Figure 1: Schematic of XRCF Experiment

.

Re-analysis of XRCF Flat Field Data

- Better modelling of spectral features, teasing apart continua and lines.
- Accounts for non-Gaussian line shapes, especially important at low energies.
- Comparison to synchrotron-calibrated Flow Proportional Counter in same beam
- These are full-frame average chip QE, with the optical blocking filter included.

	S2 F	S1 F	S3 N	S2 N	S3 C	S2 C	S3 C	S2 C	S3 C		chip li
장지	Fe K $-\alpha$	Fe K $-\alpha$	lb L $-\alpha$	Nb L $-\alpha$	'u L–α	Cu L−α	$0 \text{ K}_{-\alpha}$) K–α	$C K-\alpha$		line
6.404	6.404	6.404	2.166	2.166	0.930	0.930	0.525	0.525	0.277	(keV)	energy
0.6855	0.8787	0.5027	0.8056	0.5939	0.8412	0.5577	0.6147	0.2279	0.3394		Ą
0.0266	0.0311	0.0177	0.0253	0.0184	0.0242	0.0141	0.0117	0.0045	0.0110		QE_{err}

Table 1: Errors are statistical. Additional 1-2% Systematic errors are suspected.

Figure 2: Fitted pulse-height spectrum for S2 (full chip).

Figure 3: Fitted pulse-height spectrum for S3 (node 1).

Figure 4: Fitted pulse-height spectrum for FPC-HN.

And the stand of the stands of the

ACIS QE: Derivation from XRCF data 25 October 2004

For each detector, the source luminosity is given by:

$$S = \frac{C_{det}}{A_{det}QE_{det}} \times d_{det}^2BU_{det}$$

where:

• $C = \text{countrate in the line (cts s}^{-1})$

 $A = \text{active detector area (cm}^2)$

QE = quantum efficiency (cts photon⁻¹)

• d =source distance (cm)

BU =Beam Uniformity factor (dimensionless).

Then:

$$QE_{ACIS} = QE_{hn} \times \frac{C_{ACIS}}{C_{hn}} \times \frac{A_{hn}}{A_{ACIS}} \times \frac{BU_{ACIS}}{BU_{hn}} \times \frac{d_{ACIS}^2}{d_{hn}^2}$$

dependent chip-averaged QEU factor (see A. Vikhlinin, this workshop). To make QE at the readout (i.e. intrinsic QE for CALDB tables), we divide by the energy-

QΕ

0.5

0.2

Figure 5: S2 quantum efficiency from CALDB N0003 (curves) and measured (data points).

0.1

QΕ

Figure 7: S1 quantum efficiency from CALDB N0003 and N0005 (curves) and measured (data points).

Results in Context 25 October 2004

- ullet Ratio between N0005 BI and FI (unchanged since N0003) QE consistent with gratings analysis.
- N0005 QE curves were released (with new QEU maps) in CALDB version 2.28 in Summer,

Further information:

http://cxc.harvard.edu/cal/Acis/Cal_prods/qe/index.html

- ACIS Calibration Memo "Absolute QE of ACIS S1, S2 and S3 from XRCF data at selected energies" Edgar & Vikhlinin, 2004 Aug 11
- ACIS Calibration Memo "Absolute QE of ACIS S2 and S3 from XRCF data at Oxygen K-alpha and Copper L-alpha" Edgar, 2003 Nov 13.

25 October 2004 Chandra Calibration Workshop

Richard J. Edgar