
Upgrading the Chandra/HEASARC CalDB Index and Software Interface
DE Graessle, IN Evans, K Glotfelty, XH He, AJ Rots, JD Evans, G Fabbiano

Chandra X-ray Center Data Systems, SAO, Cambridge, MA
ABSTRACT

The HEASARC Calibration Database (CalDB) standard has been implemented for
numerous X-ray missions, including EINSTEIN, EXOSAT, ROSAT, ASCA,
Chandra, and SWIFT, among others. As mission configurations have become more
complicated, it has become clear that a more flexible index definition and interface
would be extremely helpful in adapting the CalDB standard to newer missions.
Chandra has by far the most complete and complex calibration data structure of any
mission to date. Hence, Chandra’s need for an upgrade to the index definition and
associated interface software is most pronounced. We have reported previously
(SPIE Conference 6270, May, 2006) a plan for such an upgrade and herein report
progress in implementing that plan. We have finalized a set of requirements for this
effort. We have constructed the basic libraries, an index builder, and an index search
tool. We have designed a very flexible index, which may include optional columns
for calibration parameters, and have implemented an expandable boundary
conditions block. We have also implemented a two-level index query system, with
the goal of eliminating the hard-coding of calibration-specific parameters in the
analysis tools. The ultimate goal is to facilitate the development of mission-
independent analysis software.

HEASARC CalDB Index and Interface Version 2.0
is defined and under construction by the CXC Data
Systems Group.

• Library, index builder, and search tool have
been implemented.

• Testing is in progress.

OUTLINE

I. Introduction

II. Requirements for HEASARC CalDB v2.0

III. CXC implementation status

IV. Testing plan

V. Summary

I. Introduction
Purpose of the HEASARC CalDB

• To separate CalDB data upgrades from software
upgrades, so that software patches are not necessary
for every CalDB upgrade.

• To allow multi-mission use of analysis software for
missions with a compliant CalDB.

• To facilitate the use of multiple software packages for
the same data.

NOTE: Current HEASARC Index version is “1.1”.

Issues to be addressed by Version 2.0 upgrade

• New mission configurations with intervening
elements (e.g. gratings) and interchangeable
instruments.

• Generalized indexing to accommodate a wider
variety of calibration-related configuration and
boundary parameters.

• Mission-independent tooling: Remove mission-
dependent calibration parameters from tool coding.

• Backward compatibility with existing and archival
missions in the HEASARC CalDB.

III. Implementation Status IV. Testing Plan

V. Summary

CalDB v2.0 3-Tier Testing Plan

• Elemental tests (against requirements)
– Verification of elements

• Index building
• CalDB Searches

– Error, warning checks
• Index building
• CalDB Searches

• Field test Chandra CalDB
– Version 4.0.0

• Index building
• Second-level queries – all entries
• First-level queries – all SDP and CIAO automatic

searches
– Version 3.x.x (backward compatibility)

• Index building
• Second-level queries – all entries

• Field test HEASARC missions (second-level
queries)

– ROSAT (archival)
– ASCA (archival)
– SWIFT (current)

CalDB v2.0 Baselines: Primitives
• Platforms – Linux, Unix (no VMS)
• System – C++ compiler, STL, cstd
• I/O Lib – cfitsio for FITS file reader and writer
• Modules – input stacking, error handling, string

manipulator, time analyzer, etc.
• Defined types – calSEARCH, calCALDB,

calMATCH, calFIDEL, calTRANS

Primary Input Files

• caldb index – Indices of caldb DATA in FITS
format, mandatory + optional columns (including
query columns)

• key config – plain text data table for user to specify
attributes

• caldb config – plain text file to indicate locations of
above files

• caldb alias – FITS file to record INSTRUME aliases

C Interface (“caldb2.h”)
S-LANG and PYTHON bindings available

(Refer to design review handout.)

• Initiation and closing pair
calCALDB* calInit(char *tel, char *inst);
void calClose(calCALDB *db_p);

• Querying
calSEARCH* calSetProduct(calCALDB* db_p, char* val);
calErrCode calSetStartTime(calSEARCH* cal_p, char* val);
calErrCode calSetStopTime(calSEARCH* cal_p, char* val);
calErrCode calSetFidelity(calSEARCH* cal_p, calFIDEL fidel, char* val);
calErrCode calSetParam (calSEARCH* cal_p, char* nam, char* val, char* unit);

• Automated Querying
unsigned int calGetWhichParams(calSEARCH* cal_p);
char * calGetParam(calSEARCH* cal_p, unsigned int nth, calTRANS trans);
char * calGetParamUnit(calSEARCH* cal_p, unsigned int nth);

• Retrieving
unsigned int calSEARCH(calSEARCH* cal_p)
char * calGetFile(calSEARCH* cal_p, unsigned int nth);
short calGetFileExtno(calSEARCH* cal_p, unsigned int nth);

• Matching Method
calErrCode caSetMathcMode(calSEARCH* cal_p, calMATCH);

• Error Handling
unsigned long calGetErrNum(calCALDB* db_p);
void calPrintErrors(calCALDB* db_p);

• Utility void calFree(char *);

II. Requirements

CalDB Index v2.0: The Generalized Index

• Mandatory, optional, and query columns
– Mandatory columns (Table 1) must be present in

any CalDB index file
– Optional columns
– Query columns

• Optional and Query columns for an index file are
defined in a “key configuration” file.

– An appropriate key.config file may be used to
construct and read a CalDB v1.1 index file.

First Level Query Call

Exampble
CAL_CNAM = “GREFF”

First Level Query Return
Specify the following parameter
values
TELESCOP, GRATING,
GRATTYPE, SHELL

Second Level Query Call
Caller extracts the appropriate
actual parameter values from FITS
data headers.
CAL_CNAM = “GREFF”
TELESCOP = “CHANDRA”
GRATING = “HETG”
GRATTYPE = “MEG”
SHELL = “1000”

Second Level Query Return
Selected calibration data product:
$CALDB/data/chandra/greff/
hetgD1996-11-01greffpr001N0005
.fits[1]”

CalDB Query Interface

CALDB CONFIG
Identify caldb.indx, key.config file pairs for
query specified (or defaulted)

KEY CONFIG
Use these tabulated specifications to set up the
read for caldb.indx.

CALDB INDEX
Find and return query column names and
boundary condition parameter names for which a
non-null specification is required for the
supplied value of CAL_CNAM .

Return results to caller to construct Level 2
query.

Use the set of query columns and boundary
condition names, and supplied actual values, to
select any and all matches in index. Filter
matches based on calibration validity date/time,
fidelity, and match criteria (if specified).

Return results to caller.

Fig. 1: Example of a multi-level or hand-shaking
query to the CalDB as specified in the

Requirements document for CalDB v2.0.

INDEX BUILDER TOOL
• CALINDEX

– Command syntax:
calindex index keyconf calfile [clobber]
[verbose]

– Parameter “index” = path and name of the
output index file, default=./caldb.indx

– Parameter “keyconf” = key configuration
file which defines optional columns.

– Parameter “calfile” = filename, list of
filenames, stack, directory, “CALDB”, or
none (blank index file).

EXAMPLE 1:
Building Chandra DEFAULT index with “calindex”

• Includes files for which no INSTRUME may be specified:
– GREFF (LETG, HETG), grating efficiencies

• Per mirror shell
– HRMA files

• AXEFFA (axial effective areas, total, and per shell)
• VIGNET (off-axis effective areas)

– PIXLIB files (current implementation)
• AIMPTS, GEOM, SGEOM, SKY, TDET

– OBI_TOL, observation interval tolerances

CALDB SEARCH TOOL
• QUIZ

– Command syntax:

quiz infile product calfile
– Parameter “infile” = input file with metadata

needed to complete the lookup.
– Parameter “product” = code name for the

product, e.g. “det_gain”, “t_gain”,
“gaplookup”.

– Parameter “calfile” = tells the routine to
lookup the file in the CalDB if “CALDB” is
specified, as it is usually by default.

EXAMPLE 2:
Search the above index for GREFF, AXEFFA, GEOM

• quiz input_file.fits geom

<$CALDB>/data/chandra/default/pixlib/pixD1999-07-22geom
N0005.fits[INSTRUMENTS]

• quiz input_file.fits axeffa calfile=CALDB(SHELL=0100)

<$CALDB>/data/chandra/default/hrma/hrmaD1996-12-20axe
ffaN0007.fits[AXAF_AXEFFA1]

• quiz infile=input_file.fits product=greff
calfile=CALDB(GRATTYPE=HEG; SHELL=0010)

<$CALDB>/data/chandra/default/grating/hetg/hetgD1996-11-
01greffpr001N0005.fits[AXAF_GREFF3]

• quiz input_file.fits greff
calfile=CALDB(GRATTYPE=MEG; SHELL=1000)

<$CALDB>/data/chandra/default/grating/hetgD1996-11-01gr
effpr001N0005.fits[AXAF_GREFF1]

• quiz input_file.fits greff
calfile=CALDB(GRATTYPE=LEG; SHELL=0100)

<$CALDB>/data/chandra/default/grating/letgD1996-11-01gre
ffpr001N0005.fits[AXAF_GREFF2]

• Requirements have been completed and delivered for
development of the Chandra/HEASARC CalDB Index
v2.0, and associated interface software.

• CXCDS has implemented most of the requirements,
building a significant library, and two tools: calindex
(builder) and quiz (search and return CalDB datasets).

• CXCDS CalDB manager is now testing the above tools
against the requirements document specifications.

• We anticipate the new CalDB interface will be ready for
installation and testing in CIAO and the DS software
during 2008, with the release of Chandra CalDB version
4.0.0.

