
Calibration uncertainty affects spectral fitting results,
particularly of high count spectra.
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Fig. 2: High Count Spectrum Error Inflation
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• There is a simple method to
combine statistical and
systematical uncertainties
using Sherpa.

• Check out the poster [C.10]
Chandra Calibration Review, Boston, MA., Sept. 2009 [C.10]
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Abstract
Instrument effective areas affect spectral fitting results, and the derived pa-

rameter values will depend on the particular effective area chosen for the

analysis. This is an issue for high-counts, high-quality data more than

low-counts spectra because systematic uncertainties may produce a larger

variance in the parameters than statistical uncertainties, whereas statistical

uncertainties dominate for low counts spectra.

With plausible effective areas that span the systematic variations, we show

that their effect can be easily computed using existing tools like Sherpa.

Here we describe that the variances due to statistical and systematic uncer-

tainties can be combined with the well-known multiple imputation combin-

ing rule. We demonstrate its effectiveness with simulation examples using

typical variations expected of ACIS-S effective areas. We show that ap-

proximately 20 full-fledged spectral fits, carried out with different effective

areas, are needed to capture the full extent of calibration uncertainty in the

parameter error estimate. We apply this technique to a set of observed

AGN spectra and directly demonstrate the relevance of such calculations.

Effective Area Uncertainty

Best fit parameters and errors depend on the choice of a calibration file. A

set of effective areas can be synthesized by calibration scientists and its in-

formation must be aggregated into spectral fitting analysis. Fig. 1 illustrates

a set of 1000 effective area curves {A} showing the systematic uncertainty

in the nominal ACIS-S effective areas (Drake et al. 2006; see also Drake et

al. 2009 [C.11]). The top panel shows the set of effective areas, the middle

panel shows the deviations from the nominal, and the bottom panel shows

the same set reconstructed from a small subset of its Principal Components.

Some illustrative curves are shown in the middle panel. The dark gray areas

cover 68% of the variations.
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Fig.1: Summary of Effective Area Uncertainty
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Importance of Calibration Uncertainties

Fig. 2 shows the importance of systematic uncertainty in high count spec-

tra. With marked ObsIDs in 3-4 digits, 16 radio loud QSO spectra (Siemigi-

nowska et al. 2008) are fit with an absorbed power-law spectrum using an

MCMC algorithm (BLoCXS, van Dyk et al. 2001, Lee et al. 2009). Fits were

carried out both with and without including the systematic uncertainties

in the effective areas. As the number of counts in the spectra increase,

the statistical error σstat decreases, but the systematic error is unaffected.

Thus, the total error σtot is inflated relative to σstat.
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Fig. 2: High Count Spectrum Error Inflation

Calibration Uncertainty & Inference
Without considering calibration uncertainty, best fit parameters are subject

to be biased and error bars are underestimated. Fig. 3 shows the behavior of

posterior probability densities (ppd) conditioning on different effective area

from fitting a powerlaw*wabs fakeit spectrum (Γ = 2, NH = 1023cm,∼
105 counts). The center and width of each ppd indicates best fit and sta-

tistical error. The ellipses are 90% contours. Colors identify 30 arbitrary

selected effective areas and matching best fits and errors. These system-

atic variations due to calibration uncertainty are difficult to be quantified

independent of model and data.
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Fig 3: Best Fit and Uncertainty Variations
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How to combine Errors
Given a set of effective areas, {Ai : i = 1, ...,m}, Sherpa can compute a

series of best fit parameters {θ̂i} and associated statistical error bars {σi}.
The average of {σi} is an estimate of the statistical error σstat. The spread

in {θ̂i} represents the variations due to systematic error. These two can be

added in quadrature to get the combined error on the best fit.

We use the multiple imputation combining rule (Schafer 1999) to achieve

this. The average statistical error, also called the within variance Wm,

is

Wm =
1

m

m∑

i=1

σ2
i ,

and the variance in the best fits, also called the between variance Bm,

is

Bm =
1

m− 1

m∑

i=1

(θ̂i − θ̄)2.

The total variance Tm is

Tm = Wm + (1 + 1/m)Bm. (1)

Then, the best parameter fit θ is the average of {θ̂i} and the combined error

σtot is
√

Tm. Note that (1 + 1/m)Bm estimates the increase in variance

due to the effective area uncertainty. This combining rule approximates the

sampling distribution of θ by t distribution

T
−1/2
m (θ − θ) ∼ tν

with the degree of freedom ν = (m − 1)(1 + W
(1+1/m)B

)2. The confidence

interval from this t distribution results in an error bar of statistical and

systematic uncertainties combined.

How many calibration files?
Fig. 4 shows m ≈ 20 to fit the same powerlaw*wabs model of Fig. 3 with

calibration uncertainty by choosing m random A to compute Tm for 100

times. The average and sample std. dev. of 100 Tm is marked by dots and

vertical lines.
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Limitations of the Combining Rule
1. Parameter uncertainties are assumed to be Gaussian distributed.

2. No well defined rules for choosing m.

3. Therefore, Monte Carlo simulation type experimental design studies are

required for every model and data.

Example
The same QSO spectra in Fig. 2 are fit to compare uncertainties from

BLoCXS and Sherpa/combining rule (m = 50). Simply applying the com-

bining rule within existing tools like Sherpa can handle calibration uncertain-

ties in spectral fitting analysis.
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Fig. 5: Uncertainties in Power Law Index

σσstat((ΓΓ))

σσ t
ot
((ΓΓ

))

0.01 0.1 1

0.
01

0.
1

1

16
02 30

55

30
56

30
97

30
98

31
00

31
02

31
03

31
04

31
05

31
07

37
7

83
6

86
6

Sherpa

Procedure
- spectrum, ARF, RMF, information of effective area uncertainty.

- set spectral model

- fit: get confidence intervals

- for i = 1, ...,m

- sample and update effective area.

- fit: get best fit parameter θi and statistical error σi.

end

- apply the combining rule Eq.(1) on {θi} and {σi} for θ and σtot.

Summary
• Calibration uncertainties inflate errors in best fit parameters of high count

spectra.

• Eq.(1) provides a simple rule of combining systematic and statistical un-

certainties.

• This combining rule can be adapted to other types of calibration uncer-

tainties simultaneously as long as the sample or the summary covers the

full span of variations.

• Plausible samples of calibration uncertainties will be provided through

ciao/Sherpa distribution to be incorporated into spectral analysis as de-

scribed in Procedure.
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Statistics is the study of
uncertainties (Lindley 2000).
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