

High Energy Transmission Grating (HETG) Spectra in Continuous Clocking Mode

Norbert S. Schulz and the CXC Calibration team

Scope:

- Why use CC-mode for HETG observations
- HETG CC-Mode Observations of X-Ray Binaries
- Trap maps for ACIS CC-mode Calibration
- Problems we recognized so far: OSIPs, Si K, CTI......
- TE and CC-mode with all Flight Grades Transmitted
- Observations of very bright sources
- Future Actions and Recommendations

Why use CC-mode for HETG observations

-- Timing studies-- Pileup mitigation

-- Continuum reconstruction: New pileup model for bright sources (Davis 2008)

Calibration Workshop, Cambridge MA, Sept. 21, 2009

X-Ray Binaries observed in HETG CC-Mode

source	Yoff	Z_{SIM}	rate
	arcmin	mm	cts/s
Sco X-1	0.000	-15.000	1430.0
GX 5-1	0.167	-11.300	505.0
GRO J1655-40	0.330	-7.500	492.0
H 1743-322	0.330	-7.500	492.0
GRS 1915+105	-1.330	-4.000	366.0
Cvg X-2	1.167	-6.140	331.0
Cvg X-1	-1.330	-4.000	266.0
GX 349-2	0.167	-7.500	225.0
XTE J1650-500	-1.330	-4.000	245.0
XTE J1550-564	-1.330	10.000	200.0
4U 1812-12	0.000	-6.040	182.3
4U 1820-30	1.167	-6.140	180.0
4U 1636-53	0.167	-6.140	165.0
4U 1630-472	0.330	-7.500	160.0
GX 339-4	0.330	-7.500	160.0
4U 1735-44	0.167	-7.500	150.0
XTE J1817-330	0.330	-4.500	200.0
PSR B0833-45	0.000	-3.000	88.7
GX 9+1	0.000	-3.000	86.2
4U 1705-44	0.330	-7.490	70.0
GX 340+0	0.330	-7.490	60.0
GX 17+2	0.330	-4.000	58.1
Cyg X-3	0.167	-6.800	40.0
4U 1746-37	-0.330	-4.000	24.9
4U 1728-34	0.167	-4.000	20.3
Her X-1	0.330	-4.000	19.7
SAX J1808.4-3658	0.330	-4.000	20.0
GRS 1747-312	-0.330	-6.140	12.1
RAPID BURSTER	0.000	0.000	5.6
GX 1+4	-0.330	-5.860	4.0
CRAB PULSAR-CC	0.000	0.000	2.0
4U 1323-619	-0.330	-4.000	1.1

35 sources observed so far mostly X-ray Binaries total exposure: ~ 2 Msec

Observe sources the instruments were NOT designed for

Primary application of cc-mode was for maximum time resolution

The use of Graded mode heavily restricts instrument level calibration

Calibration Workshop, Cambridge MA, Sept. 21, 2009

Current status of ACIS CC-mode Calibratio

Development of trailing pix. algorithm using ECS data in cc-mode:

Current status of ACIS CC-mode Calibratio

Development of trailing pix. algorithm using ECS data in cc-mode:

128

16

4

32

8

1

2

charge

transfer

charge transfer

ACIS flight grades (fltgrade) record wated of the 8 pixels surrounding a local maximum have charge in them, above the split threshold.

Many CC mode events have charge in the upper pixe. (flugrade 64) or both upper and lower pixel (fltgrade 66)

Seven flight grades, including 66 and 255, are discarded on board. ACIS fltgrade 66

Calibration Workshop, Cambridge MA, Sept. 21, 2009

Frame Drops in Bright X-Ray Binaries

Use Graded Mode to minimize diff. exosure loss via frame drops in the telemetry stream

loose flight grades through trailing charge for good

Calibration Workshop, Cambridge MA, Sept. 21, 2009

Calibration Workshop, Cambridge MA, Sept. 21, 2009

Calibration Workshop, Cambridge MA, Sept. 21, 2009

Calibration Workshop, Cambridge MA, Sept. 21, 2009

ACIS properties in HETG CC-Mode Spectra

Calibration Workshop, Cambridge MA, Sept. 21, 2009

How to Address the Problem

What has been done so far:

-find all descrete changes in the effective area.
---> OSIP problems, Si K edge problem
-find mismatches between HETG flux dispersions
---> Diagnose CTI, CCD, Grade related problems
-cross-correlate observations with other instruments, i.e. RXTE, Suzaku, etc...

----> Heavyly model dependent, source flux dependent, dependent on external instruments calibrations

What is currently done::

apply current versions of CTI corrections to observations preformed in cc-faint mode

Obs Sequence: 4U1957-11 ----> 10ks TE ----> 20ks CC ----> 10ks TE

Calibration Workshop, Cambridge MA, Sept. 21, 2009

Obs Sequence: 4U1957-11 ----> 10ks TE ----> 20ks CC ----> 10ks TE

Calibration Workshop, Cambridge MA, Sept. 21, 2009

Obs Sequence: 4U1957-11 ----> 10ks TE ----> 20ks CC ----> 10ks TE

Calibration Workshop, Cambridge MA, Sept. 21, 2009

Wednesday, September 30, 2009

CC-mode HETG, MEG +1 TE compare before vs after

Calibration Workshop, Cambridge MA, Sept. 21, 2009

Wednesday, September 30, 2009

Calibration Workshop, Cambridge MA, Sept. 21, 2009

Wednesday, September 30, 2009

CC-mode HETG, MEG -1 TE compare before vs CC with CTI

Calibration Workshop, Cambridge MA, Sept. 21, 2009

CC-mode HETG, MEG -1 TE compare before vs CC with CTI

CC-mode HETG, MEG +1 TE compare before vs CC with NCTIW66

CC-mode HETG, MEG -1 TE compare before vs CC with NCTIW66

Calibration Workshop, Cambridge MA, Sept. 21, 2009

Calibration Workshop, Cambridge MA, Sept. 21, 2009

CC-mode HETG, MEG +1 TE compare before vs CC with NCTIW66

Calibration Workshop, Cambridge MA, Sept. 21, 2009

Rate Dependent Issues:

Si K edge problem: > 50 mCrab:

- depression between 6.2 -- 6.74 A (Si K edge) in BI devices
- edge mismatch (shift) in FI devices

HEG +/- vs MEG +/- mismatch:

- separate count rate dependence from low rate CTI

What is currently done::

evaluate Si K edge depth vs. source rate

Bright X-ray sources with $N_h < 3 \times 10^{21} \text{ cm}^{-2}$

Calibration Workshop, Cambridge MA, Sept. 21, 2009

Bright X-ray sources with $N_h < 3 \times 10^{21} \text{ cm}^{-2}$

Bright X-ray sources with $N_h < 3 \times 10^{21} \text{ cm}^{-2}$

Calibration Workshop, Cambridge MA, Sept. 21, 2009

Bright X-ray sources with $N_h < 3 \times 10^{21} \text{ cm}^{-2}$

Bright X-ray sources with $N_h < 3 \times 10^{21} \text{ cm}^{-2}$

Calibration Workshop, Cambridge MA, Sept. 21, 2009

Bright X-ray sources with $N_h < 3 \times 10^{21} \text{ cm}^{-2}$

Bright X-ray sources with $N_h < 3 \times 10^{21} \text{ cm}^{-2}$

Calibration Workshop, Cambridge MA, Sept. 21, 2009

Bright X-ray sources with $N_h < 3 \times 10^{21} \text{ cm}^{-2}$

Bright X-ray sources with $N_{\rm h} < 3 \times 10^{21} \, {\rm cm}^{-2}$

Calibration Workshop, Cambridge MA, Sept. 21, 2009

The Si K Edge in CC-Graded Mode: HEG vs MEG

Calibration Workshop, Cambridge MA, Sept. 21, 2009

CC-Graded Mode: MEG vs HEG

Calibration Workshop, Cambridge MA, Sept. 21, 2009

All observations should use "Faint" NOT "Graded"

- include non-standard flight grades, i.e. g66
- consider creating new G+ mode, which includes g66
- compensate anticipated loss of data through telemetry saturation via increased exposure rather on-board grading Observations ::

-moderately brightsourese in cc-F mode: 4U 1957-11 -- 50 mCrab (CAL, cycle 10, 20 ks) GX 13+1 -- 90 mCrab (GTO, cycle 11, 40 ks) GX 17+2 -- 150 mCrab (GO, cycle 11, 10 ks) -- 250 mCrab (CAL, cycle 10, 20 ks) Calibration Workshop, Cambridge MA, Sept. 21, 2009