Improvements to the HRC-S QE Uniformity & LETGS Effective Area

Deron Pease, Jeremy Drake, Herman Marshall, Vinay Kashyap, Brad Wargelin

Outline

- I. HRC-S QEU update from in-flight data
- 2. Update to Low-E effective area & Mid-E adjustment
- $3. \Rightarrow Improved On-Axis QE$

QEU Basics

- vI QEU=1.0
- v2 HRC Lab FlatField
 - Fe-K α , Ti-K α , Al-K α , Ni-L α , O-K α , C-K α , B-K α
 - ~3% stat. err. 1/2-tap bins
 - 3-tap slice along nominal LETG dispersion

QEU In-Flight Tune-Up

Data

- Center PKS 2155-304 + MKN 421~160ks
- Wings HZ 43 (8 obs) ~178ks
- Extract in TDET coords.
 - add obs. with similar aimpoints
 - 1/4-tap bins with $\leq 2\%$ stat. err.

Method

- Ratio +/- Counts Spectra
 vs. Ratio +/- QEU
 - Independent of other model components
 - QEU correction = slope of line defined by the deviation of the QEU Ratio from the Counts Ratio at each wavelength

QEU Improved

- Separation of Pos. & Neg. is not possible
- Apply correction oppositely to Pos. & Neg. QEU v2
- Anti-symmetric wobbles required to transform on-axis QE to LETG dispersed Effective Area

Low-E Revisited: LETGS Effective Area

- Sirius B Extraction Discrepancy
 ~10% 1999 vs 2002
 - dead-time corrections & GTIs
 - total exposure times
 - status bit filtering
 - extraction region parabolic vs bow-tie

Effective Area Adjustments

- Source model uncertainties≥ 10%
- macroscopic adjustments to HRC-S QE/QEU
- no sharp
 (~resolution)
 corrections;
 except UVIS edge
 structure

Low-E Improved: Thanks, Sirius B

- Sirius B 3 obs 1999 ~60ks
- best WD atmosphere model uncertainties ~10%
- "good" range $\lambda > 80 \text{ Å}$
- data binned to ≤ 3% stat

- Error evaluation:
 - Low-E + QEU 20% ⇒ 15% ??

Mid-E Adjustment

- LETG efficiencies update
- PKS 2155-304 1999 ~60ks
- Single power-law model*
- range $\lambda < 60 \text{ Å}$
- data binned to $\leq 2\%$ stat
- Modest smooth adjustment < 5%
- uncertainties ~10%

30

Wavelength (Å)

20

50

40

60

1.10

0.90

0

10

Apply the Improvements

Employ QEU to derive on-axis QE from Low-E & Mid-E EA updates

■ R.M.S. deviation ~1.9%

History of on-axis QE

Remaining Ideas/Issues

- PKS 2155-305 PL Model
 - clearly complex data
 - 2PL vs. IPL
 - λ < 60 Å effect < 5%
- $60 \text{ Å} < \lambda < 80 \text{ Å}$
 - poor statistics, no data
 - no strong source
 - plate gaps
 - binning gets messy
 - SB & PKS indicate opposite
 - Can HZ 43 & MKN 421 help?

Conclusions/Speculations?

Go Sox!!!