Propagation of ACIS background uncertainties

Maxim Markevitch

Detector background variability

• Spectral shape of quiescent detector background is constant to $\pm 2\%$ (rms)

Blank-sky background variability

• Shape of quiescent blank-sky background at E > 2 keV is constant to $\pm 2\%$

A1413 Chandra radial temperature profile

- Vary background normalization by $\pm 2\%$, add in quadrature
- If any residual flares have to be modeled, uncertainty is $\gg 2\%$!

XMM background uncertainty

EPIC background is lower by $\times 2 - 3$ than ACIS (as a fraction of source brightness), but less predictable:

- Standard flare filtering (as in literature): 10 12% rms uncertainty for 2–7 keV
- Aggressive flare filtering (Nevalainen et al. 2005): 4 5%

