Modeling Compton Thick Obscuration in Accreting Supermassive Black Hole Systems Kendrah Murphy MT Kavli Institute for Astrophysics & Space Research

Tahir Yaqoob Johns Hopkins University/NASA GSFC

Overview

- How do we model Compton-thick AGN?
 - ad hoc models cannot yield column density and other physical parameters
- Continuum & fluorescent line spectra from self-consistent physical models
 - new spectral-fitting model now available
 - comparison with conventional methods
 - spectral fitting example
- Results from the Monte Carlo simulations
 - Fe Kα equivalent width and Compton shoulder
 - Observed/Intrinsic luminosity ratios: where are the CT AGN?
 - Energy losses in the obscuring structure: is the IR/X-ray ratio an indicator of N_H?

 "Compton Thick" if N_H >1.24 x10²⁴ cm⁻². But which N_H? Column and intrinsic X-ray luminosity are highly model-dependent even with high SNR.

- "Compton Thick" if N_H >1.24 x10²⁴ cm⁻². But which N_H? Column and intrinsic X-ray luminosity are highly model-dependent even with high SNR.
- Usual procedure: [high snr & cxrb models] simple l.o.s. attenuation plus disk-reflection (PEXRAV) to mimic Compton scattering:

- "Compton Thick" if N_H >1.24 x10²⁴ cm⁻². But which N_H? Column and intrinsic X-ray luminosity are highly model-dependent even with high SNR.
- Usual procedure: [high snr & cxrb models] simple l.o.s. attenuation plus disk-reflection (PEXRAV) to mimic Compton scattering:

- "Compton Thick" if N_H >1.24 x10²⁴ cm⁻². But which N_H? Column and intrinsic X-ray luminosity are highly model-dependent even with high SNR.
- Usual procedure: [high snr & cxrb models] simple l.o.s. attenuation plus disk-reflection (PEXRAV) to mimic Compton scattering:

- "Compton Thick" if $N_H > 1.24 \times 10^{24} \text{ cm}^{-2}$. But which N_H ? Column and intrinsic X-ray luminosity are highly model-dependent *even* with high SNR.
- Usual procedure: [high snr & cxrb models] simple l.o.s. attenuation plus disk-reflection (PEXRAV) to mimic Compton scattering:

 Cannot relate any of the components to each other, in particular R, N_H, and Fe Kα line EW.

• Amplitude of reflection, R, is arbitrary, θ has no meaning in this context: scattered continuum is highly geometry and angle-dependent.

• No physical meaning can be assigned to derived parameters, including element abundances and intrinsic luminosity.

MYTorus Compton-thick X-ray Reprocessor Model

Manual	Publications	Talks	Downloads	Resources	Tools	X-ray Missions	Data Archives	Contact
							Å	\bigcirc
			A ROUTE					
A								
\mathcal{A}	\mathcal{A}							
/							W	ww.n

mytorus.com contents and model @ 2008-2010 Tahir Yaqoob, Kendrah Murphy

Tahir Yaqoob

Kendrah Murphy

Direct comparison of toroidal reflection spectrum with PEXRAV (disk)

Severe geometry dependence because of angle-selection

Accretion Processes in X-Rays 2010

Direct comparison of toroidal reflection spectrum with PEXRAV (disk)

Severe geometry dependence because of angle-selection

Accretion Processes in X-Rays 2010

Direct comparison of toroidal reflection spectrum with PEXRAV (disk)

Severe geometry dependence because of angle-selection

Accretion Processes in X-Rays 2010

Accretion Processes in X-Rays 2010

Accretion Processes in X-Rays 2010

Table 8.2: XSPEC parameters for example 2 (§8.2.2)

Model	Fit	Mod	Component	Parameter	Value	Property	Symbol
par #	par #	comp					
1	1	1	constant	factor	1.00000	frozen	C_k
2	2	2	phabs	nH 1e22	1.790000E-02	frozen	$N_{ m H,Gal}$
3	3	3	zpowerlw	PhoIndex	1.90000		Γ_i
4	4	3	zpowerlw	Redshift	3.300000E-03	frozen	z
5	5	3	zpowerlw	norm	2.700000E-02		A_i
6	6	4	MYtorusZ	NH 1e24	2.00000		N_H
7	7	4	MYtorusZ	IncAng Degrees	90.0000	frozen	$\theta_{\rm obs}$
8	4	4	MYtorusZ	Redshift	3.300000E-03	= par 4	z
9	8	5	constant	factor	1.00000	-	A_S
10	6	6	MYtorusS	NH 1e24	2.00000	= par 6	N_H
11	7	6	MYtorusS	IncAng Degrees	90.0000	= par 7	$\theta_{\rm obs}$
12	3	6	MYtorusS	PhoIndx	1.90000	= par 3	Γ_i
13	4	6	MYtorusS	Redshift	3.300000E-03	= par 4	z
14	5	6	MYtorusS	norm	2.700000E-02	= par 5	A_i
15	9	7	constant	factor	1.00000	-	A_L
16	10	8	gsmooth	Sig@6keV keV	4.248000E-03		σ_L
17	11	8	gsmooth	Index	1.00000	frozen	α
18	6	9	MYtorusL	NH 1e24	2.00000	= par 6	N_H
19	7	9	MYtorusL	IncAng Degrees	90.0000	= par 7	$\theta_{\rm obs}$
20	3	9	MYtorusL	PhoIndx	1.90000	= par 3	Γ_i
21	4	9	MYtorusL	Redshift	3.300000E-03	= par 4	z
22	5	9	MYtorus L	norm	2.70000E-02	= par 5	Ai
	-	-				Paro	

3 table components:

- Zeroth-order continuum
- Scattered continuum
- Emission line spectrum

Files	being	used for table models:
Model	comp	File
4		mytorus_Ezero_v00.fits
6		mytorus_scatteredH500_v00.fits
9		mytl_V000010nEp000H500_v00.fits

 $A_i E^{-\Gamma_i}$

 $-\sigma_{abs}(E)N_{H,Gal}$

 C_k

 $MYTZ(N_{\rm H}, \theta_{\rm obs}, E)$

constant<1>*phabs<2>((zpowerlw<3>)MYtorusZ<4>+constant<5>(MYtorusS<6>)+ constant<7>*gsmooth<8>(MYtorusL<9>))

 $A_{\rm S}$

 $MYTS(A_i, \Gamma_i, N_H, \theta_{obs}, E)$

 $A_{\rm L}$

 $gs[E, \sigma_{\rm L}, x, MYTL(A_i, \Gamma_i, N_{\rm H}, \theta_{\rm obs}, x)]$

Table 8.2:	XSPEC	parameters	for	example	2	(§8.2.2)
------------	-------	------------	-----	---------	---	----------

Model par #	Fit par #	Mod comp	Component	Parameter	Value	Property	Symbol
1	1	1	constant	factor	1.00000	frozen	C_k
2	2	2	phabs	nH 1e22	1.790000E-02	frozen	$N_{ m H,Gal}$
3	3	3	zpowerlw	PhoIndex	1.90000		Γ_i
4	4	3	zpowerlw	Redshift	3.300000E-03	frozen	z
5	5	3	zpowerlw	norm	2.700000E-02		A_i
6	6	4	MYtorusZ	NH 1e24	2.00000		N_H
7	7	4	MYtorusZ	IncAng Degrees	90.0000	frozen	$\theta_{ m obs}$
8	4	4	MYtorusZ	Redshift	3.300000E-03	= par 4	z
9	8	5	constant	factor	1.00000		A_S
10	6	6	MYtorusS	NH 1e24	2.00000	= par 6	N_H
11	7	6	MYtorusS	IncAng Degrees	90.0000	= par 7	$ heta_{ m obs}$
12	3	6	MYtorusS	PhoIndx	1.90000	= par 3	Γ_i
13	4	6	MYtorusS	Redshift	3.300000E-03	= par 4	z
14	5	6	MYtorusS	norm	2.700000E-02	= par 5	A_i
15	9	7	constant	factor	1.00000	-	A_L
16	10	8	gsmooth	Sig@6keV keV	4.248000E-03		σ_L
17	11	8	gsmooth	Index	1.00000	frozen	α
18	6	9	MYtorusL	NH 1e24	2.00000	= par 6	N_H
19	7	9	MYtorusL	IncAng Degrees	90.0000	= par 7	$\theta_{\rm obs}$
20	3	9	MYtorusL	PhoIndx	1.90000	= par 3	Γ_i
21	4	9	MYtorusL	Redshift	3.300000E-03	= par 4	z
22	5	9	MYtorusL	norm	2.70000E-02	= par 5	A_i

3 table components:

- Zeroth-order continuum
- Scattered continuum
- Emission line spectrum

being	used for table models:
comp	File
	mytorus_Ezero_v00.fits
	<pre>mytorus_scatteredH500_v00.fits</pre>
	mytl_V000010nEp000H500_v00.fits
	being comp

 $A_i E^{-\Gamma_i}$

 $\rho - \sigma_{abs}(E) N_{H,Gal}$

 C_k

constant<1>*phabs<2>((zpowerlw<3>)MYtorusZ<4>+constant<5>(MYtorusS<6>)+ constant<7>*gsmooth<8>(MYtorusL<9>))

 $A_{\rm S}$

 $MYTZ(N_{\rm H}, \theta_{\rm obs}, E)$

 $MYTS(A_i, \Gamma_i, N_H, \theta_{obs}, E)$

 $A_{\rm L}$

 $gs[E, \sigma_{\rm L}, x, MYTL(A_i, \Gamma_i, N_{\rm H}, \theta_{\rm obs}, x)]$

Table 8.2: X	SPEC parameters	for example 2	(§8.2.2)
--------------	-----------------	---------------	----------

Model par #	Fit par #	Mod comp	Component	Parameter	Value	Property	Symbol
1	1	1	constant	factor	1.00000	frozen	C_k
2	2	2	phabs	nH 1e22	1.790000E-02	frozen	$N_{ m H.Gal}$
3	3	3	zpowerlw	PhoIndex	1.90000		Γ_i
4	4	3	zpowerlw	Redshift	3.300000E-03	frozen	z
5	5	3	zpowerlw	norm	2.70000E-02		A_i
6	6	4	M YtorusZ	NH 1e24	2.00000		N_H
7	7	4	MYtorusZ	IncAng Degrees	90.0000	frozen	$\theta_{\rm obs}$
8	4	4	MYtorusZ	Redshift	3.300000E-03	= par 4	z
9	8	5	constant	factor	1.00000		A_S
10	6	6	MYtorusS	NH 1e24	2.00000	= par 6	N_H
11	7	6	MYtorusS	IncAng Degrees	90.0000	= par 7	$\theta_{ m obs}$
12	3	6	MYtorusS	PhoIndx	1.90000	= par 3	Γ_i
13	4	6	MYtorusS	Redshift	3.300000E-03	= par 4	z
14	5	6	MYtorusS	norm	2.70000E-02	= par 5	A_i
15	9	7	constant	factor	1.00000		A_L
16	10	8	gsmooth	Sig@6keV keV	4.248000E-03		σ_L
17	11	8	gsmooth	Index	1.00000	frozen	α
18	6	9	MYtorusL	NH 1e24	2.00000	= par 6	N_H
19	7	9	MYtorusL	IncAng Degrees	90.0000	= par 7	$\theta_{ m obs}$
20	3	9	MYtorusL	PhoIndx	1.90000	= par 3	Γ_i
21	4	9	MYtorusL	Redshift	3.300000E-03	= par 4	z
22	5	9	MYtorusL	norm	2.700000E-02	= par 5	A_i

3 table components:

 $A_{\rm L}$

- Zeroth-order continuum
 - Scattered continuum
- Emission line spectrum

Files	being	used for table models:
Model	comp	File
4		mytorus_Ezero_v00.fits
6		mytorus_scatteredH500_v00.fits
9		mytl_V000010nEp000H500_v00.fits

 $A_i E^{-\Gamma_i}$

 $\rho - \sigma_{abs}(E) N_{H,Gal}$

 C_k

constant<1>*phabs<2>((zpowerlw<3>)MYtorusZ<4>+constant<5>(MYtorusS<6>)+ constant<7>*gsmooth<8>(MYtorusL<9>))

 $A_{\rm S}$

 $MYTZ(N_{\rm H}, \theta_{\rm obs}, E)$

 $MYTS(A_i, \Gamma_i, N_H, \theta_{obs}, E)$

 $gs[E, \sigma_{\rm L}, x, MYTL(A_i, \Gamma_i, N_{\rm H}, \theta_{\rm obs}, x)]$

Table 8.2: XSPEC parameters for example 2 (§8.2.2)

Model par #	Fit par #	Mod comp	Component	Parameter	Value	Property	Symbol
1	1	1	constant	factor	1.00000	frozen	C_k
2	2	2	phabs	nH 1e22	1.790000E-02	frozen	$N_{ m H,Gal}$
3	3	3	zpowerlw	PhoIndex	1.90000		Γ_i
4	4	3	zpowerlw	Redshift	3.300000E-03	frozen	z
5	5	3	zpowerlw	norm	2.700000E-02		A_i
6	6	4	MYtorusZ	NH 1e24	2.00000		N_H
7	7	4	MYtorusZ	IncAng Degrees	90.0000	frozen	$\theta_{\rm obs}$
8	4	4	MYtorusZ	Redshift	3.300000E-03	= par 4	z
9	8	5	constant	factor	1.00000	-	A_S
10	6	6	MYtorusS	NH 1e24	2.00000	= par 6	N_H
11	7	6	MYtorusS	IncAng Degrees	90.0000	= par 7	$\theta_{ m obs}$
12	3	6	MYtorusS	PhoIndx	1.90000	= par 3	Γ_i
13	4	6	MYtorusS	Redshift	3.300000E-03	= par 4	z
14	5	6	MYtorusS	norm	2.700000E-02	= par 5	A_i
15	9	7	constant	factor	1.00000		A_L
16	10	8	gsmooth	Sig@6keV keV	4.248000E-03		σ_L
17	11	8	gsmooth	Index	1.00000	frozen	α
18	6	9	MYtorusL	NH 1e24	2.00000	= par 6	N_H
19	7	9	MYtorusL	IncAng Degrees	90.0000	= par 7	$\theta_{ m obs}$
20	3	9	MYtorusL	PhoIndx	1.90000	= par 3	Γ_i
21	4	9	MYtorusL	Redshift	3.300000E-03	= par 4	\boldsymbol{z}
22	5	9	MYtorusL	norm	2.700000E-02	= par 5	A_i

 $MYTZ(N_{\rm H}, \theta_{\rm obs}, E)$

constant<1>*phabs<2>((zpowerlw<3>)MYtorusZ<4>+constant<5>(MYtorusS<6>)+

3 table components:

 $MYTS(A_i, \Gamma_i, N_H, \theta_{obs}, E)$

 $A_{\rm S}$

- Zeroth-order continuum
- Scattered continuum
 - Emission line spectrum

 $gs[E, \sigma_{\rm L}, x,$

constant<7>*gsmooth<8>(MYtorusL<9>))

 $MYTL(A_i, \Gamma_i, N_H, \theta_{obs}, x)]$

 $A_{\rm L}$

Files being used for table models: Model comp File 4 mytorus_Ezero_v00.fits 6 mytorus_scatteredH500_v00.fits 9 mytl_V000010nEp000H500_v00.fits

 $A_i E^{-\Gamma_i}$

 $-\sigma_{abs}(E)N_{H,Gal}$

 C_k

- Fe Kα Emission Line EW
- Shape of Compton shoulder
- Luminosity ratios
- IR:X-ray luminosity

- Fe Kα Emission Line EW
- Shape of Compton shoulder
- Luminosity ratios
- IR:X-ray luminosity

BUT...these curves change if the continuum is diluted by a scattered component from a warm, optically thin zone

- Fe Kα Emission Line EW
- Shape of Compton shoulder
- Luminosity ratios
- IR:X-ray luminosity

- Fe Kα Emission Line EW
- Shape of Compton shoulder
- Luminosity ratios
- IR:X-ray luminosity

Gaussian convolution: $N_{\rm H}=10^{25}$ cm⁻², face-on

Energy	Bin Width
Range (keV)	(eV)
0.5–4.0	one bin
4.0-5.8	20 eV
5.8-7.2	0.4 eV
7.2–9.0	20 eV
9.0-500	one bin

- Fe Kα Emission Line EW
- Shape of Compton shoulder
- Luminosity ratios
- IR:X-ray luminosity

In the case of a "face-on" line-of-sight, the enhancement of the continuum luminosity over the intrinsic luminosity due to the reprocessor can be as large as 40%.

The difference between the luminosity ratios for edge-on and face-on lines-of-sight at $N_H = 10^{25}$ cm⁻² is very large. Surveys are much more likely to find type 1 (unobscured) Compton-thick AGN than type 2 (obscured) Compton-thick sources.

- Fe Kα Emission Line EW
- Shape of Compton shoulder
- Luminosity ratios
- IR:X-ray luminosity

• IR:X-ray ratio from the X-ray reprocessing contribution in a Compton-thin AGN can be the SAME or MORE than a Compton-thick AGN.

 \bullet The dependence of IR/X on covering factor and steepness of intrinsic continuum can be stronger than the dependence on $N_{\rm H}$.

• Of course there will be other contributions to IR/X (e.g. starburst) this can only make the lack of correlation of IR/X with N_H WORSE.

- **MYTorus**: a spectral-fitting tool that self-consistently models the reprocessed X-ray emission from the putative torus in AGN (<u>www.mytorus.com</u>).
- The model is constructed from fully relativistic Monte-Carlo calculations of absorption, scattering, and fluorescent line emission within the circumnuclear material, for column densities covering the Compton-thin to Compton-thick regimes.
- The X-ray reflection continuum, the EW of the Fe K emission, as well as the shape and relative magnitude of its Compton shoulder, are important diagnostics of the geometry, column density, and inclination angle of the reprocessor.
 - MYTorus allows one to extract physical information from X-ray data of accreting supermassive black hole systems, which cannot be obtained via adhoc modeling.
 - Interested in keeping informed about updates to the model? <u>model@mytorus.com</u> to subscribe to the email list

Adding additional components

- Power-law continua
- Soft X-ray thermal continua
- High-energy cutoff
- Additional narrow lines
- Accretion disk reflection
- Cold/neutral absorption
- Partial Covering
- Warm Absorber

$$\begin{split} N(E) &= [(A_1 E^{-\Gamma_1}) + (A_2 E^{-\Gamma_2})] \text{MYTZ}(z, N_{\text{H}}, \theta_{\text{obs}}, E) \\ &+ [(A_1 E^{-\Gamma_1}) \text{MYTS}(z, A_1, \Gamma_1, N_{\text{H}}, \theta_{\text{obs}}, E)] \\ &+ [(A_2 E^{-\Gamma_2}) \text{MYTS}(z, A_2, \Gamma_2, N_{\text{H}}, \theta_{\text{obs}}, E)]. \end{split}$$

Table 8.3: XSPEC parameters for example # 3 (§8.2.3)

Model par #	Fit par #	Mod comp	Component	Parameter	Value	Property	Symbol
1	1	1	constant	factor	1.00000	frozen	C_k
2	2	2	phabs	nH 1e22	1.790000E-02	frozen	$N_{ m H,Gal}$
3	3	3	zpowerlw	PhoIndex	1.90000		Γ_i
4	4	3	zpowerlw	Redshift	3.300000E-03	frozen	z
5	5	3	zpowerlw	norm	2.70000E-02		A_i
6	6	4	MYtorusZ	NH 1e24	2.00000		N_H
7	7	4	MYtorusZ	IncAng Degrees	90.0000	frozen	$\theta_{ m obs}$
8	4	4	MYtorusZ	Redshift	3.300000E-03	= par 4	z
9	8	5	constant	factor	1.00000	-	A_S
10	6	6	MYtorusS	NH 1e24	2.00000	= par 6	N_H
11	7	6	MYtorusS	IncAng Degrees	90.0000	= par 7	$ heta_{ m obs}$
12	3	6	MYtorusS	PhoIndx	1.90000	= par 3	Γ_i
13	4	6	MYtorusS	Redshift	3.300000E-03	= par 4	z
14	5	6	MYtorusS	norm	2.70000E-02	= par 5	A_i
15	9	7	constant	factor	1.00000		A_L
16	10	8	gsmooth	Sig@6keV keV	4.248000E-03		σ_L
17	11	8	gsmooth	Index	1.00000	frozen	α
18	6	9	MYtorusL	NH 1e24	2.00000	= par 6	N_H
19	7	9	MYtorusL	IncAng Degrees	90.0000	= par 7	$ heta_{ m obs}$
20	3	9	MYtorusL	PhoIndx	1.90000	= par 3	Γ_i
21	4	9	MYtorusL	Redshift	3.300000E-03	= par 4	z
22	5	9	MYtorusL	norm	2.700000E-02	= par 5	A_i
23	12	10	constant	factor	1.300000E-03		f_{j}
24	3	11	zpowerlw	PhoIndex	1.90000	= par 3	$\Gamma_j (= \Gamma_i)$
25	4	11	zpowerlw	Redshift	3.300000E-03	= par 4	z
26	5	11	zpowerlw	norm	2.700000E-02	= par 5	$A_j (= A_i)$

Files	being	used for table models:
Model	comp	File
4		mytorus_Ezero_v00.fits
6		mytorus_scatteredH500_v00.fits
9		mytl_V000010nEp000H500_v00.fits

Implementation of the Spectral Fitting Model