Advection-Dominated Accretion in Low-Luminosity Black Holes

> Ramesh Narayan Harvard-Smithsonican Center for Astrophysics

20-Year Collaboration with Jeff McClintock My closest collaborator by far About 65 papers (50 refereed) over the time period 1996-2014 ADAF model of BH X-ray binaries BH: Event Horizon, spin, mass distribution Many students: Ann Esin, Kristen Menou, Eric Zimmerman, Rebecca Shafee, Bob Penna, Sasha Tchekhovskoy, Jack Steiner

Many postdocs...

Accretion Disk Theory: Analytical Models

- 1D accretion models have been developed by simplifying the equations (Shakura & Sunyaev 1973; Novikov & Thorne 1973; Narayan & Yi 1994, 1995; Abramowicz et al. 1988, 1995;...)
- These models provide a lot of insight
- Three regimes of accretion have been identified, distinguished by Mdot/Mdot_{Edd}

Accretion Regimes

Super-Eddington Accretion, Slim Disk, ADAF (Abramowicz+ 89; Sadowski+ 15) Radiation-dominated: ULX, SS433

Thin Accretion Disk: radiatively efficient (Shakura-Sunyaev, Novikov-Thorne 73) Radiation-dominated: BH XRB soft state

ADAF, RIAF, Hot Accretion (Ichimaru 77; Rees et al. 82; Narayan& Yi 94, 95; Abramowicz+ 95; Yuan & Narayan 14) Hot, two-temperature, radiatively inefficient: BH XRB low/quiescent state

Advection-Dominated Accretion Flow (ADAF)

$$TdS = dQ = Q^+ - Q^-$$

$$\rho T \frac{ds}{dt} = q^+ - q^-$$

$$\rho v_r T \frac{ds}{dr} = q^+ - q^-$$

$$q^{\rm adv} = q^+ - q^-$$

• Thin accretion disk Radiatively efficient $q^+ \approx q^- \gg q^{\text{adv}}$

Advection Dominated Accretion Flow (ADAF) Radiatively inefficient $q^+ \approx q^{adv} \gg q^-$

Properties of Hot ADAFs

- Radiatively inefficient (particles meet infrequently)
- Optically thin: radiates via synchrotron, bremsstrahlung, inverse Compton
- Relevant for low-Mdot accretion sources
- Two-temperature: $T_i \sim 10^{12}$ K/r, $T_e \sim 10^{10-11}$ K
- Geometrically thick
- Has powerful jets and winds

Geometry of ADAF Model

- High Soft state: thin disk
- Low state: no thin disk: kT>100 keV

Soft X-ray Transients

18.5

19

 $\log[\nu(Hz)]$

19.5

20

Go through a very wide range of Mdot during transient outburst

Sweep through spectral states via state changes

36.6

18

A Paradigm for Dim BHs

- Esin, McClintock & Narayan (1997):
 When Mdot falls below a few percent of Eddington, a hole opens
 up in the thin disk, and the inside is filled with a hot ADAF
- As Mdot decreases further, the hole grows bigger and radiative efficiency drops significantly

Esin et al.(1997)

Theoretical model spectra of a 6 Mo BH accreting at different Mdot

Compared to data on Nova Muscae 1991

Esin+ 1997

ADAF model of state transition in Cyg X-1 (Esin et al. 1998)

Other ADAF-related work on BH XRBs:

N, McClintock & Yi (1996) N, Barret & McClintock (97) Hameury et al. (97) Menou et al. (99) Esin et al. (2000, 2001)

Clues from timing: Gilfanov et al. (1999)

Conflicting evidence from X-ray reflection

Hysteresis is unexplained

ADAF model of XTE J1118+480

Esin, McClintock et al. (2001)

Guess (based on observations) of how the transition radius Rtr varies with L/LEdd (or equivalently Mdot)

Using ADAFs to Test for the Event Horizon

- Narayan, Garcia & McClintock (1997) suggested comparing quiescent BH SXTs (or X-ray Novae) with quiescent NS SXTs
- If both systems accrete via a radiatively inefficient mode (ADAF), then NS SXTs should be significantly brighter than BH
 SXTs, since NSs will radiate the advected energy from their surfaces, whereas BHs will swallow the energy
- Results: Narayan et al. (1997), Asai et al. (1998), Chen et al. (1998), Menou et al. (1999), Garcia, McClintock, Narayan et al. (2001)

Chandra Results on Quiescent SXTs

Garcia et al. (2001):

Chandra data!

BH SXTs are more than 100 times fainter than NS SXTs

Such a large difference is expected **IF**: (1) The accretion is radiatively inefficient, **AND** (2) BHXN have event horizons and NSXN have surfaces

Narayan & McClintock (2008)

Black Holes Really Are Black!!

- If we see a dim BH SXT, we might think that it is dim simply because very little gas reaches the center
- But, when a nearly identical NS SXT is 100+ times brighter, we know that it is more than just gas supply
- Most straightforward interpretation: quiescent BH SXTs are much dimmer than NS SXTs because they swallow the gas, and heat energy, through the Event Horizon
- If this interpretation is correct, then the X-ray data imply that black holes really are really black.

ADAF Thermodynamics is Highly Uncertain

- The plasma is collisionless
 Electrons/protons do their own thing
- Non-equilibrium: Two-temperature
- Each particle remembers its heating history and radiates accordingly
- We need to understand plasma heating processes to make good models

Simulating Fundamental Plasma Processes

- So far, ADAF models have used toy prescriptions for particle heating, based on guesses, or clues from observations
- Now, people are beginning to study particle heating via detailed Particle-in-Cell (PIC) simulations (billions of particles)
 - Spitkovsky, Sironi, Li, Uzdensky, …
 - Xinyi Guo, Michael Rowan

Magnetic Reconnection

Rowan, Sironi & Narayan (2017)

Electron vs Ion Heating in Low Mach Number Shocks

δ_e /(1-δ_e) vs Shock Mach Number

> Guo, Sironi & Narayan (2018a,b)

Numerical Simulations of Black Hole Accretion

- Numerical simulations of BH accretion can include all the complex physics that purely analytical methods cannot handle
 - Multi-dimensional -> 2D/3D Hydrodynamics
 - General Relativity (BH) → 2D/3D GRHD
 - Magnetic field (MRI) -> GRMHD
 - Radiation -> GRRMHD
 - More Thermal Physics -> Plasma processes
 - Nonthermal Physics -> Plasma processes

Accretion Regimes

Super-Eddington Accretion, Slim Disk, ADAF (Abramowicz+ 89; Sadowski+ 15) Radiation-dominated: ULX, SS433

Thin Accretion Disk: radiatively efficient (Shakura-Sunyaev, Novikov-Thorne 73) Radiation-dominated: BH XRB soft state

Hot Accretion, ADAF, RIAF (Ichimaru 77; Rees et al. 82; Narayan& Yi 94, 95; Abramowicz+ 95; Yuan & Narayan 14) Hot, two-temperature, radiatively inefficient: BH XRB low/quiescent state

MOVIE

3D GRMHD simulation (Tchekhovskoy+ 2011,12)

Non-radiating ADAF around a rapidly spinning BH accreting in the MAD state

A really Powerful Jet

Clear evidence for energy (and angular momentum) outflow from the BH

GRRMHD simulation: M=10M_☉, a∗=0, Mdot=10Mdot_{Edd}, (Sądowski et al. 2015: KORAL) (ULX)

ADAFs and Jets

- Both kinds of ADAF happily produce powerful outflows and jets
- The most powerful and most relativistic jets are obtained when
 - the BH spins rapidly, and
 - strong magnetic field around BH
 - Blandford-Znajek (1977) process