

The vertical structure of the accretion disc in LMXBs

Felipe Jiménez-Ibarra Teo Muñoz-Darias and Jorge Casares

Low Mass X-ray Binary

M1: BH or NS

Low Mass X-ray Binary

M1: BH or NS

Persistents

Transients

Persistents

Transients

Persistents

Transients

* Casares and Charles 1994

* Steeghs and Casares 2002

$K_{em} / K_2 = K_c (\alpha, M_2 / M_1)$

Muñoz-Darias et al. (2005)

$K_{em} / K_2 = K_c (\alpha, M_2/M_1)$

Aquila X-1

- + Neutron star transient
- + Outburst ~ 2 years
- + GTC 10.4m (2011, 2013 and 2016)

Jiménez-Ibarra et al. 2018 (MNRAS)

Aquila X-1

Mata Sánchez et al. 2017 (VLT-nIR)

 $K_2 = 136 \pm 4 \text{ km s} - 1$ $M_2 / M_1 = 0.41 \pm 0.08$

Aquila X-1

Mata Sánchez et al. 2017 (VLT-nIR)

$$K_2 = 136 \pm 4 \text{ km s} - 1$$

 $M_2 / M_1 = 0.41 \pm 0.08$

$K_{c} (\alpha, M_{2}/M_{1}) = K_{em} / K_{2}$

Opening angle

Opening angle

Opening angle

+ No X-ray heating $\alpha \sim 6 \deg$

+ X-ray heating
$$\alpha \sim 18$$
—22 deg
 $^{\circ}+2.5}_{\alpha} = 15.5^{\circ}_{-5}$

We measured opening angle of the accretion disc from empirical methods for the very first time

Monte Carlo technique allow us to give a robust estimate of the error.

Our result consistent with an irradiation-driven thick disc

Thanks for the attention !