Radiation-Hydrodynamic Simulations of Disk Winds in X-ray Binaries

Christian Knigge

Knox Long, Daniel Proga, James, Matthews, Stuart Sim, Mandy Bailey, Sam Mangham

The Structure of X-ray Binaries

Nick Higginbottom

Outbursts of X-ray Binaries

Spectral Hardness

Nick Higginbottom

XRBs in outburst exhibit blue-shifted absorption in X-ray lines!

Nick Higginbottom

XRBs in outburst exhibit blue-shifted absorption in X-ray lines!

• always see H/He-like Iron lines

Nick Higginbottom

XRBs in outburst exhibit blue-shifted absorption in X-ray lines!

Nick Higginbottom

Only observed...

Ponti+2012

Nick Higginbottom

Interpretation

Ponti+2012

Southampton School of Physics & Astronomy

Nick Higginbottom

Motivation: Why Should You Care?

- XRB disk winds are <u>powerful</u>: $\dot{M}_{wind} > \dot{M}_{acc}$
 - Accretion
 - disk winds may remove significant amounts of angular momentum
 - Veiling
 - all of our observations are viewed *through* the outflow
 - State changes and radio jets
 - disk winds might be involved in triggering state transitions

Driving Mechanisms

- Magneto-centrifugal acceleration
 - "Bead-on-a-wire" (Blandford & Payne 1982)
- Radiation pressure
 - Continuum \rightarrow but usually $L < L_{edd}$
 - Lines → too ionized
- Thermal driving
 - − Disk atmosphere is irradiated by X-rays → $T_{top} \simeq T_{Compton}$
 - Mass loss is inevitable at large radii \rightarrow

$$R_{IC} = \frac{GM_{BH}\mu m_H}{k_B T_{IC}}$$

 $v(T_{Compton}) > v_{esc}(R)$

Nick Higginbottom

Driving Mechanisms

- Magneto-centrifugal acceleration
 - "Bead-on-a-wire" (Blandford & Payne 1982)
- Radiation pressure
 - Continuum \rightarrow but usually $L < L_{edd}$
 - Lines \rightarrow too ionized

• Thermal driving

- − Disk atmosphere is irradiated by X-rays → $T_{top} \simeq T_{Compton}$
- Mass loss is inevitable at large radii →

$$v(T_{Compton}) > v_{esc}(R)$$

- Defines the "Compton Radius"

$$R_{IC} = \frac{GM_{BH}\mu m_H}{k_B T_{IC}}$$

Nick Higginbottom

The Physics of Thermally-Driven Disk Winds Thermal Instability

Nick Higginbottom

The Physics of Thermally-Driven Disk Winds Hydrodynamics

RHD Simulations of Disk Winds in XRBs

Southampto

School of Physics & Astronomy

The Physics of Thermally-Driven Disk Winds

Previous Work

- Heating and cooling rates matter! Higginbottom & Proga 2015; Higginbottom et al. 2016
- But all work to date neglected radiation transport
 - Should <u>at least</u> account for attenuation of X-rays in the outflow itself!
- Need to couple hydrodynamics with radiative transfer: ZEUS + PYTHON e.g. Long & Knigge 2002; Higginbottom+13+14; Matthews+15+16; Mangham+17

Nick Higginbottom

RHD vs HD: 5x Lower Mass-Loss Rate

(but this is still $2x\dot{M}_{acc}$)

Nick Higginbottom

Nick Higginbottom

School of Physics & Astronomy

Inclination Dependence

Higginbottom+2018

Nick Higginbottom

"Efficiency": $(\dot{M}_{wind} / \dot{M}_{acc})$

Nick Higginbottom

Luminosity Dependence

Nick Higginbottom

Theoretical

Luminosity Dependence RHD Results

Nick Higginbottom

Luminosity Dependence Is this a Problem?

Nick Higginbottom

Luminosity Dependence Wind Speed and Line Profiles

Nick Higginbottom

RHD Simulations of Disk Winds in XRBs

UNIVERSITY OF

School of Physics & Astronomy

Sout