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Evidence for Disk Wind's
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XRBs in outburst exhibit blue-shifted absorption in X-ray lines!
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XRBs in outburst exhibit blue-shifted absorption in X-ray lines!
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Evidence for Disk Winds
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XRBs in outburst exhibit blue-shifted absorption in X-ray lines!

—  Qutflow!
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Evidence for Disk Wind's

Only observed...
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Interpretation
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Motivation: Why Should You Care?

>M

wind acc

* XRB disk winds are powerful: M

— Accretion

* disk winds may remove significant amounts of angular momentum

— Veiling

* all of our observations are viewed through the outflow

— State changes and radio jets

* disk winds might be involved in triggering state transitions
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Driving Mechanisms

* Magneto-centrifugal acceleration

— “Bead-on-a-wire” (Blandford & Payne 1982)

* Radiation pressure
— Continuum = butusually L<L .

— Lines = too ionized

* Thermal driving

— Disk atmosphere is irradiated by X-rays = T',,,=T compion

— Mass loss is inevitable at large radii — VT compton) > Vese (R)
— Defines the “Compton Radius”
_ GMpppmy
Ric =
kelic
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The Physics of Thermally-Driven Disk Winds Southampton
Thermal Instability
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Hydrodynamics

ZEUS (Stone, Proga,...)
Mass g—[t) —+ IOV -v=~0

Momentum p%‘t’ — _VP + 0L
Energy IODQt (E) :_va

-

Source of ionizing radiation L,

—2
Fixed density boundary  p(r) = po (L)
Ric

For a given cell, we need the
radiative heating/cooling rate
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The Physics of Thermally-Driven Disk Winds i cm s
Previous Work

* Heating and cooling rates matter!
Higginbottom & Proga 2015; Higginbottom et al. 2016

* But all work to date neglected radiation transport

— Should at least account for attenuation of X-rays in the outflow itself!

* Need to couple hydrodynamics with radiative transfer: ZEUS + PYTHON
e.g. Long & Knigge 2002; Higginbottom+13+14; Matthews+15+16; Mangham+17

Density (gem ™)
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RHD vs HD: 5x Lower Mass-Loss Rate Southampton
(but this is still 2xM ___)
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Comparison to Chandra Observations of J1655
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Inclination Dependence

Higginbottom+2018
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“Efficiency”: (M. IM__)
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RHD Results
¢ 4 HIM
20 - ¢ GROJI655 Efficiency stays ~constant
® 4U 1630
B GRS 1915 Consistent with Done+18
Y 15 ]
=
T
E
=10 |
H
51 A - u
N % K ok
01 A
10! 100

L/ Li’dd

Nick Higginbottom RHD Simulations of Disk Winds in XRBs



UNIVERSITY OF

Luminosity Dependence Southampeon
Is this a Problem?
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Wind Speed and Line Profiles
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