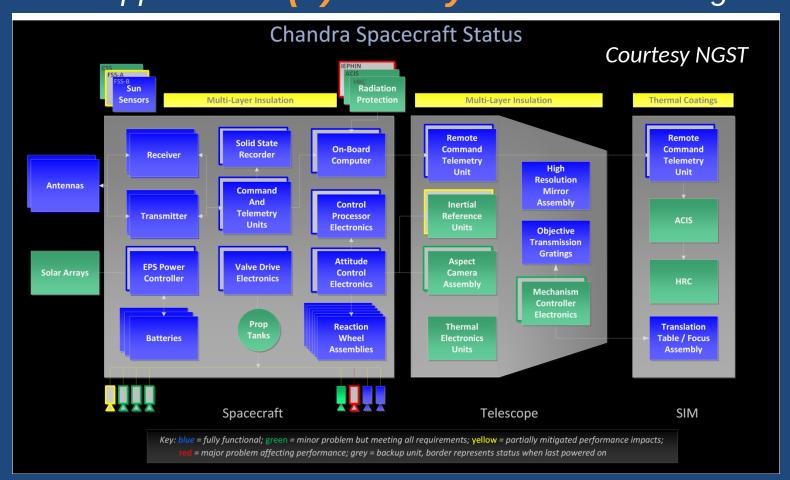
Welcome to (the other) Cambridge!!

And to our summer workshop: Accretion in Stellar Systems

News from Chandra

Belinda Wilkes Director Chandra X-ray Center



Basic Information

- ~3 day orbit
- ~70% observing efficiency (~16-18 hr radzone)
- Mission Planning:
 - -1-week schedule, DSN COM every 8 hrs
- Resolution:
 - Spatial ~0.5"
 - Spectral, gratings: ~200-1000; 0.1-10 keV
 - Highest time resolution, HRC: 60 μ s
- 25+ year lifetime expectation

Chandra:19 years and counting! Detailed 2014 engineering review showed no showstoppers to **10(+) more years** of observing

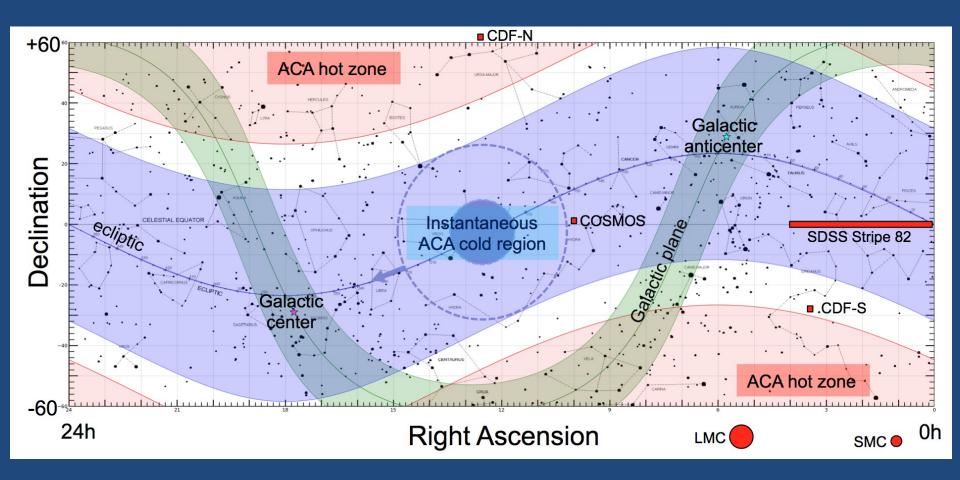
Little red or yellow!

Chandra Challenges

• Thermal degradation:

- Spacecraft insulation is degrading \rightarrow general warming
- Monitor, and predict temperatures of many components
- Limits dwell time over most solar pitch angles
- Complex scheduling:
 - Limits on constrained time to maintain an efficient schedule
 - · Long exposures are split into multiple shorter ones
- Restrictions on observing time:
 - VLPs < 2Msec observing time close to ecliptic poles

- Upcoming Call for White Papers


• Asking for suggestions of catalogs of cool attitude targets

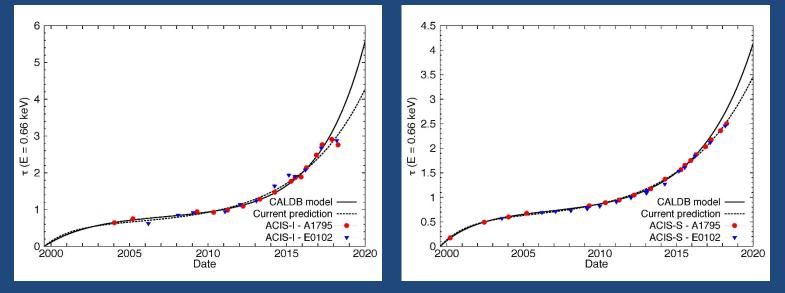
• Contaminant build-up on ACIS OBF

- Significantly reduced A_{eff} < 2 keV since launch
- Longer exposures for science requiring low energy data
- Buildup of contaminant has slowed, updated effective areas being released

Constraints on the Sky due to thermal degradation

Accretion in Stellar Systems

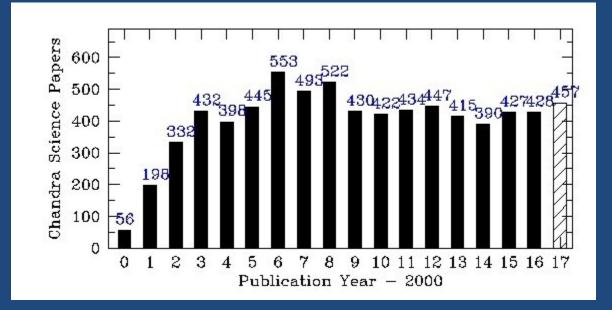
Chandra Challenges


- Thermal degradation:
 - Spacecraft insulation is degrading \rightarrow general warming
 - Monitor, and predict temperatures of many components
 - Limits dwell time over most solar pitch angles
 - Complex scheduling:
 - Limits on constrained time to maintain an efficient schedule
 - Long exposures are split into multiple shorter ones
 - Restrictions on observing time:
 - VLPs < 2Msec observing time close to ecliptic poles
 - Upcoming Call for White Papers
 - Asking for suggestions of catalogs of cool attitude targets
- Contaminant build-up on ACIS OBF
 - Significantly reduced A_{eff} < 2 keV since launch
 - Longer exposures for science requiring low energy data
 - Buildup of contaminant has slowed, updated effective areas being released

ACIS Filter Contaminant slows buildup

ACIS-I

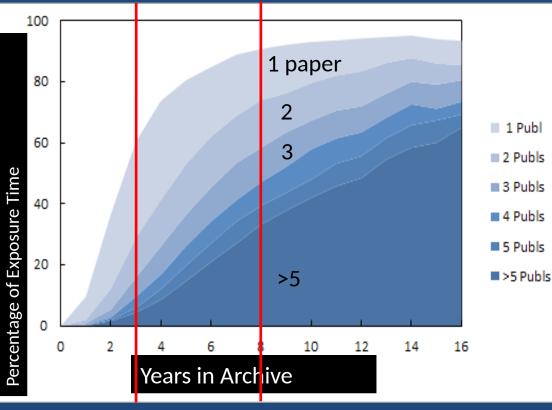
ACIS-S


• ACIS-I

- The rate of contaminant build-up is consistent with ~0 since mid 2017
- Updated model released: June 2018
- ACIS-S
 - The rate of contaminant build-up has significantly slowed since mid 2017
 - Updated model in development, expected release ~early Sept 2018

Chandra's continued high impact on astrophysics

Refereed papers per year


Refereed science papers

- 7299 total Chandra papers (to 07/01/2018)
- 450 mean # papers/year (2005-2017)
- 35 mean # citations/paper after 6 years (84 after 14 yrs)
- >320 PhD theses (worldwide)

Metric measuring productivity and data utilization

% of data published in # refereed papers vs. # years in archive

Publications:

- Median time to publication:2.4 yrs
- After 3 years: 60% of data are published in 1 or more papers
- After 8 years: 90% of data are published in 1 or more papers, 60% in 3 or more

Science covers full range of astrophysics: Cosmology, black holes, clusters, galaxies, stellar birth and death , exo-planets, planets (including Pluto (New Horizons), Jupiter (Juno))

9th Aug 2018

Accretion in Stellar Systems

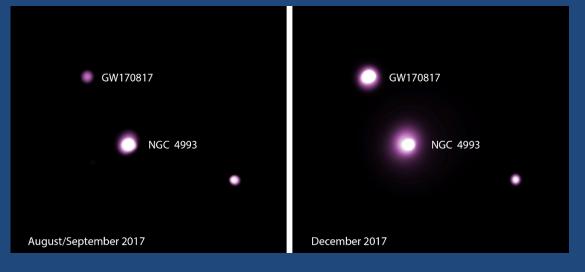
Rots et al. (2012)

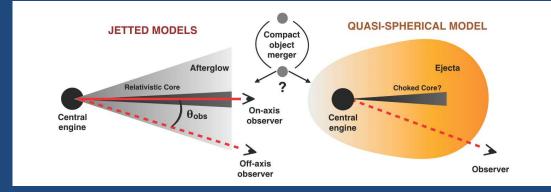
Chandra 20th Proposal Cycle

Category (Cycle 20)	Exposure Time Allocation (Ms)
General Observer	10-12
Large Projects (>400 ks)	4-6
Director's Discretionary	1
Joint*	~ 2.5 weeks of time
Archive	\$1M*
Theory	\$650K*
Very Large Projects (> 1 Ms)	=<3 (none awarded)
Past Categories:	
X-ray Visionary Projects (> 1 Ms)	5-8 (enabled by orbit evolution)

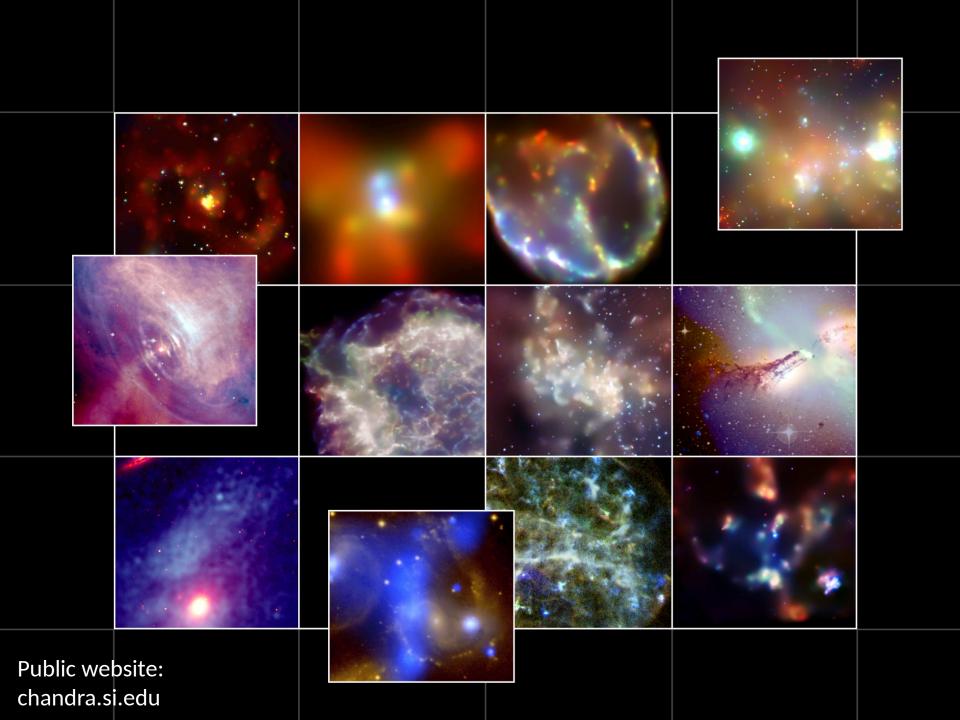
*XMM-Newton, HST, NRAO, NOAO, Swift, NuSTAR *Total GO Budget: ~\$11M

Major Chandra Events


- NASA Contract Extension: 2018-2030, inc 3 year close-out
- NASA Senior Review (SR2019)
- Operations Control Center moving to Burlington, MA
 - Major activity at OCC, in addition to satellite operations
 - Construction in process, early access was gained last week
 - Aim to complete ~March 2019
- 20th anniversary year: 2019!!
 - AAS Jan: 4-space booth, new products, press reception, plenary talk, AAS/HEAD Chandra session
 - "The Chandra X-ray Observatory" (e-book, IoP): review of 20 years of Chandra science for the community
 - Chandra's Greatest Hits coffee table book, Smithsonian books (TBC)
 - 20 years of Chandra science symposium: 3-6 Dec 2019, Boston Park Plaza
 - Many physical and virtual events being planned throughout the year!

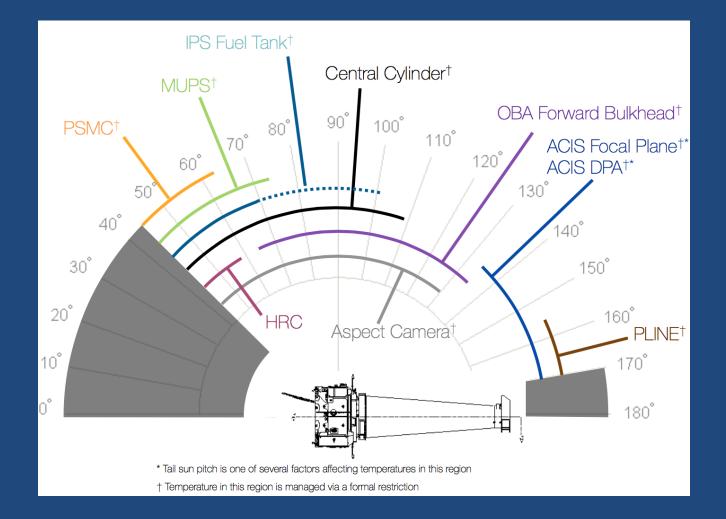


Science Highlight Merging NSs: GW170817


Tracking by *Chandra continues:*

- Undetected 2 days >LIGO
- Detected 9 days >LIGO
- Press conference, Oct 16
- Brightened *~4, w/radio
- Competing non-thermal models
- Possible turnover detected
- Remnant is likely a BH
- Next observation: Aug '18 (this week!)

Backup Slides


Accretion in Stellar Systems

Thermal issues in aging spacecraft

- Insulation is degrading \rightarrow general heating
- Temperature managed via spacecraft attitude control
- Many subsystems monitored continuously
- Limited dwell times at most pitch angles
- Scheduling is complex, most observations are split
- So far only one limit on time allocation: < 2 Ms >60° ecliptic latitude

Thermal issues in aging spacecraft Limited dwell times at ~all pitch ranges

Accretion in Stellar Systems

8th Aug 2018

Time Constraints (TC)

- Limit # TC observations (<90ks) → maximize observing efficiency
- Categories (Cycle 19): – Easy (48), Average (25), Difficult (17)
- Demand is high → most passing-ranked TC proposals are approved

