Inferring average radiative efficiency of accretion in ULXs from their XLF

Marat Gilfanov MPA, Garching

with Wenda Zhang and Rashid Sunyaev

Radiative efficiency of accretion

$$L(\dot{M}) = \eta(\dot{M}) \times \dot{M}c^2$$

radiative efficiency of accretion

$$\eta(\dot{M}) = \frac{L(\dot{M})}{\dot{M}}$$

is difficult to measure (main difficulty is \dot{M})

 \dot{M} - mass transfer rate (e.g. at the Roche lobe or Bondi radius) L - bolometric (mostly X-ray) luminoisty

Radiative efficiency of accretion (BH)

3

- thin Shakura-Sunyaev disk:
- ADAF at small \dot{M} : (Naraya & Yi; Narayan+1998)
- super-Eddington regime: (Shakura & Sunyaev 1973; Abramowicz+ 1988)

 $\eta \sim \dot{m}$ $\eta \sim \frac{\ln \dot{m}}{\dot{m}}, \quad L = L_{Edd} \times (1 + \ln \dot{m})$

 $\eta \sim const$ (=0.057 for a nr BH)

Radiative efficiency of accretion in BH and NS

- boundary layer near NS surface ~doubles the luminosity: non-rotating NS: $\eta = 0.21$ (EOS FPS, Sibgatullin & Sunyaev 2000)
- ADAF regime still exists, but no drop of the total accretion efficiency (Yi et al., 1996)

Radiative efficiency of accretion in BH and NS

- boundary layer near NS surface ~doubles the luminosity: non-rotating NS: $\eta = 0.21$ (EOS FPS, Sibgatullin & Sunyaev 2000)
- ADAF regime still exists, but no drop of the total accretion efficiency (Yi et al., 1996)

A method to measure the radiative efficiency of accretion in the population average sense

Relation between XLF and Mdot distribution

$$L = L(\dot{M})$$

$$\frac{dN}{dL} = \frac{dN}{d\dot{M}} \times \frac{d\dot{M}}{dL}$$

$$\int_{L}^{\infty} \frac{dN}{dL} dL = \int_{L}^{\infty} \frac{dN}{d\dot{M}} \times \frac{d\dot{M}}{dL} dL$$

$$\int_{L}^{\infty} \frac{dN}{dL} dL = \int_{M(L)}^{\infty} \frac{dN}{d\dot{M}} d\dot{M}$$

$$N(>L) = N(>\dot{M}(L))$$

Population averaged accretion efficiency

 $N(>L) = N(>\dot{M}(L))$

XLF of X-ray binaries known!

distribution of binaries over mass-transfer rate:

- from observations (difficult!)
- from binary population synthesis calculation
- inferred from some other considerations

X-ray luminosity function of HMXBs

a power law with a rollover or a cut-off at $log(L_x)\sim 40$

Grimm, MG, Sunyaev, 2003 Swartz et al., 2004, 2011 Mineo, MG, Sunyaev, 2012

Mdot distribution

at $log(L_X) \sim 35...38$ (thin disk case) one should expect $L = \eta_0 \dot{M} c^2$ $\frac{dN}{d\dot{M}} = \eta_0 c^2 \frac{dN}{dL} \implies \frac{dN}{d\dot{M}} = N_0 (\eta_0 c^2)^{-0.6} \dot{M}^{-1.6}$

assuming that $\frac{dN}{d\dot{M}} = N_0 (\eta_0 c^2)^{-0.6} \dot{M}^{-1.6}$ in the entire \dot{M} range of interest we obtain:

$$\dot{M}(L) = \frac{1}{\eta_0 c^2} \left[\frac{0.6 N(>L)}{N_0} \right]^{-\frac{1}{0.6}} \text{ and } \eta = \eta_0 \frac{L N_0^{-\frac{1}{0.6}}}{\left[0.6 N(>L) \right]^{-\frac{1}{0.6}}}$$

where N(>L) is the observed XLF of HMXBs

This formula is valid as long as $\frac{dN}{d\dot{M}} \propto \dot{M}^{-1.6}$ extends to sufficiently high \dot{M}

Average Mdot-L_x relation for HMXBs

09/08/2018

Marat Gilfanov

Average radiative efficiency of HMXBs

- nearly constant at $\log(L_X) \le 38.5$
- starts to decline near L_{Edd} for a neutron star
- drops down by a factor of ~10 in the ULX regime brightest ULXs must be fed at ~10⁻⁵ Msun/yr

Fit with a $L_X = L_{Edd} (1 + \ln \dot{m})$ model

- one population model does not work
- a model of two populations with different L_{Edd} good fit
- parameters of the two populations:

population	mass	fraction
light (=NS)	$1.0^{+0.62}_{-0.36}M_{\odot}$	0.26 ± 0.10
heavy (=BH)	$13.5^{+3.5}_{-2.3}M_{\odot}$	0.74 ± 0.10

model require large fraction of the BH population

Best-fit two population model

09/08/2018

Impact of a cut-off in the \dot{M} distribution

- it was assumed that $\frac{dN}{d\dot{M}} \propto \dot{M}^{-1.6}$ continues to $\dot{M} > 10^{-4} M_{\odot} / yr$
- if the \dot{M} distribution significantly steepens at $\dot{M} \sim 10^{-5} M_{\odot} / yr$ average radiative efficiency in ULXs must be high
- conversely, \dot{M} -distribution can not be significantly steeper than the $\dot{M}^{-1.6}$ law much below $\dot{M} \sim 10^{-6} M_{\odot} / yr$

Summary

- population average radiative efficiency of ULXs:
 - nearly constant at $\log(L_X) \le 38.5$
 - starts to decline near L_{Edd} for a neutron star
 - drops down by a factor of ~10 in the ULX regime brightest ULXs must be fed at ~10⁻⁵ Msun/yr and lose about ~90% of the material in outflows
 - shape is well described by the $\propto (1 + \ln \dot{m})$ law
- can be well approximated with a two population model with masses of populations close to NS and BH masses
- the model does not anticipate existence of ULX pulsars which may not have much impact due to their relatively small numbers

Thank you!