

Accreting binary populations in nearby galaxies

Andreas Zezas

University of Crete, CfA

V. Antoniou, P. Sell, J. Andrews, K. Anastasopoulou, K. Kovlakas, K. Kouroubatzakis

A census of X-ray binary populations

Sell et al. 2011

A census of X-ray binary populations

- Compact object demographics / mass spectrum
- Exotic / extreme objects
- Connection with parent stellar populations
- Constraints on binary evolution channels

Their (complicated) evolution

High-mass XRBs

P_{orb} age ZAMS 100 days 8.0 0.0 Myr 14.4 Roche-lobe overflow • 102 days 13.3 Myr 8.0 14.1 helium star 416 days 13.3 Myr 3.5 16.5 1. supernova 423 days 15.0 Myr 3.3 16.5neutron star 0 5400 days 15.0 Myr 1.4 16.5 ecc = 0.81НМХВ 1300 days 24.6 Myr 15.0

Low-mass XRBs

Tauris & van den Heuvel 2006

Gravitational wave sources

Marchant et al., 2016

IGM preheating

Madau & Fragos 2017

The Legacy of Chandra

What we learned so far

HMXBs

LMXBs

Mineo et al. 2014

Boroson et al. 2011

What we learned so far

HMXBs + LMXBs

XLF evolution

XLFs do not vary

Antennae: Zezas et al. 2007 M81: Sell et al. 2011 NGC 300:

Binder et al. 2017

Evidence for age dependence

25

10-9

X-ray binary populations

Fragos et al. 2013

Linden et al. 2010

Fragos et al. 2013

Disentangling the age dependence

Results on individual galaxies M51, SMC, M81

Fragos et al. 2013

Age dependence of XRBs

M51

Declination

Lehmer et al. 2017

Probing the faintest populations

MCELS Ha

HMXB classification

HMXB formation efficiency

Antoniou et al, 2018

HMXB formation efficiency

Grand design spiral galaxy (3.6 Mpc)

Deep Chandra coverage
 Sell et al. 2011; Swartz et al.

Grand design spiral galaxy (3.6 Mpc)

Deep Chandra coverage
 Sell et al. 2011; Swartz et al.

Complete HST coverage

Measure directly XLF and formation efficiency of different XRB classes

XLFs for different source classes (Sell et al. 2011)

Optical counterparts: Donor star classification

Sell et al. 2018

XLFs for different source classes (Sell et al. 2018)

Summary

- We are starting to go beyond scaling relations
- Characterize the parameters affecting XRB populations

- Key for constraining XRB formation and evolution models
- Cosmological evolution of galaxies and compact objects
 - GW sources, XRBs in the early universe

But Chandra reaches only the tip of the iceberg...

Beyond Chandra

Limitations of Chandra : variable under-sampled PSF

Full characterization of XRBs

Classify compact objects and donors

Discrete K-ray sources in galaxies : The basic ingredients

Accreting nulsar

M81 Globular clusters

Sivakoff etal 1997

Chance coincidence

Chance coincidence

	4	r=1" (black) r=2" (grey) 0.02 0.06			0.09 0.19 0.19					
>	-				0.03 0.10		0.05 0.22	0.10 0.38) B	
	16				0.04 0.11		0.32 1.00	inf. 1.00	inf. 1.00	
					0.17 0.36		inf. C inf. C). 33 0).81 0).82 0.08).66 0.30	
	20 18	0.04 0.10			0.79 0.78		1.00 1.00	0.33 0.66	3 6	
		inf.	0.53 0.32	0.30 0.32	0.77 0.99	0.34 0.51	1.00 C).76 0).77 0	0.13 0.04 0.19 0.12	
			1.00 0.71	0.47 0.79	0.88 0.94	0.46 0.72	1.00 1.00	0.25 0.39		
			inf. 0.56	0.92 0.69	1.00 0.99	0.70 0.84	0.55 0.82	0.45 0.62	inf. 0.67	
	22	inf.			1.00 0.99	0.81 0.94	0.43 0.70	0.12 0.32	0.12 0.30	
					· · ·	I	0.22 0.49		0.06 0.16	
			—1		0		1		2	

V-I

Beyond Chandra

With 0.5" resolution and 2m² we can reach fainter populations (end-to-end simulations)

Pop. Synthesis Andrews et al.

HMXB classification

Antoniou et al, 2017

HMXB classification

Results

- 2393 sources detected (1095 > 5 σ significance) (limiting L_x ~ 3.5 x 10³² erg/s; 0.5 – 7 keV @ 50% compl.)
- ~ 65 (Wing) 75 (Bar) sources per field
- 21 pulsars detected (Hong et al. 2017) (out of the 34 known in these regions)
- A Be-XRB pulsar emerging from the companion circumstellar disk (Hong et al. 2016)
- 12 SNRs detected
- 128 sources associated with an OB star

MCELS $H\alpha$

 \sim

Magellanic Clouds

Nearest star-forming galaxies (50-60 kpc) Advantages :

- Probe very faint populations (Lx ~10³³ erg/s)
- Large populations of HMXBs (e.g. Haberl & Sturm 2016)
- Well determined star-formation history metallicity (1/5 Z₀ - 1/3 Z₀)

Magellanic Clouds

Nearest star-forming galaxies (50-60 kpc) Advantages :

- Probe very faint populations (Lx ~10³³ erg/s)
- Large populations of HMXBs
- Well determined star-formation history metallicity (1/5 Z₀ - 1/3 Z₀)

Unique laboratories for the study of HMXBs Address: formation efficiency of XRBs accretion physics, interaction of accretion flow and magnetic fields.

The luminosity function: Flat slope : $\alpha \sim 0.2 / 0.8$ Indication for break at $3x10^{34}$ erg/s

consistent with accretion in a inhomogeneous environment and the onset of the propeller effect (c.f. Shtykovskiy & Gilfanov 2004).

Hong et al. 2016

The deep Chandra SMC Survey

A Chandra "X-ray Visionary Program": 11 +3 Fields in the SMC (50-60 kpc) 2 x 50ksec exposures (1.1 + 0.3 Msec total)

Key Goal

- A deep census of accreting pulsars (Lx ~10³³ erg/s)
- HMXB formation efficiency at different ages Well determined star-formation history metallicity (1/5 Z₀ - 1/3 Z₀)

SMC star-formation history

Harris & Zaritsky, 2004

From Chandra to Lynx

With well-sampled 0.5" PSF across the field we can: Characterize X-ray sources

X-ray binary populations

Linden et al. 2010

Looking ahead: Oth

Goal: A more complete picture of XRB formation/evolution

-72:00:0!

30:05.

73:00:05.0

15:00.0

Need:

•Cover age / metallicity space
Deep observations
• Uniform sensitivity
• Chandra – HST synergy

55:00.0

10:00.0 1:00:00.0

