

3D Line Driven Winds - Clumpy Outflows

Sergei Dyda & Daniel Proga University of Nevada Las Vegas

Abstract

- We perform the first 3D hydrodynamic (HD) simulations of line driven disc winds.
- > We find that non-axisymmetric density features, so called clumps, form primarily at the base of the wind. These clumps are
- ▷ a factor of 3 more/less dense than the background
- super-Sobolev in length
- b have velocity dispersion much greater than the sound speed

Clump Density

Relative Standard Deviation

$$\sigma(\rho) = \frac{1}{\bar{\rho}} \sqrt{\sum_{k=0}^{N_{\phi}} (\rho_k - \bar{\rho})^2}$$

- Maximum Deviation
 - $\delta_{\max}(\rho) = rac{1}{\overline{
 ho}} \max \left|
 ho_{\mathrm{k}} \overline{
 ho} \right|.$
- Clumps \sim a few times background density

Introduction

- Line driving is a possible mechanism for launching outflows from massive stars, cataclysmic variables (CVs), X-ray binaries (XRBs) and active galactic nuclei (AGN).
- Observations suggest these outflows are clumpy, necessitating 3D simulations.

Hydrodynamics - Basic Equations

Clump Size

- Characterize size using width of density auto-correlation
- Clumps restricted to base of wind
- Super-Sobolev in length $I \sim 10^8 \mathrm{cm} \gg \mathrm{l_{Sob}} \sim 10^7 \mathrm{cm}$

Velocity Dispersion

- Time-averaged streamlines most stationary in fast stream.
- Velocity dispersion comparable to wind velocity at base
- Velocity dispersion large

sdyda@physics.unlv.edu

Disc Wind Anatomy

compared to sound speed.

Observational Prospects

- Emission spectra $\sim \rho^2$
- \blacktriangleright Absorption spectra $\sim \rho$
- Line broadening due to velocity dispersion

Future Work

- Can clumps grow further via thermal instability?
- Can self-shielding enhance/suppress the wind by changing ionization state of gas?
- Are outflows sensitive to the driving spectral energy distribution?

References

Dyda, S., Proga, D., 2018, MNRAS, 475, 3786D, arXiv:1710.07882 [1]

Overdensities Underdensities

Hydrostatic Disc

- Global properties determined by total system luminosity
- \triangleright Higher luminosity \rightarrow larger mass flux
- \triangleright Higher luminosity \rightarrow faster velocity
- Geometry of outflow determined by relative stellar & disc luminosity
 - \triangleright Higher stellar luminosity \rightarrow radial flow
 - \triangleright Higher disc luminosity \rightarrow vertical flow
- Non-axisymmetries primarily at the base of the wind

Dyda, S., Proga, D., 2018, MNRAS, 478, 5006D, arXiv:1802.03670 [2]

Acknowledgments

This work was supported by NASA under ATP grant NNX14AK44G. The authors also acknowledge useful discussions with Zhaohuan Zhu and Tim Waters.

Contact Information

Email: sdyda@physics.unlv.edu

