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Abstract

I We perform the first 3D hydrodynamic (HD) simulations of line driven
disc winds.

I We find that non-axisymmetric density features, so called clumps, form
primarily at the base of the wind. These clumps are
. a factor of 3 more/less dense than the background
. super-Sobolev in length
. have velocity dispersion much greater than the sound speed

Introduction

I Line driving is a possible mechanism for launching outflows from massive
stars, cataclysmic variables (CVs), X-ray binaries (XRBs) and active
galactic nuclei (AGN).

I Observations suggest these outflows are clumpy, necessitating 3D
simulations.

Hydrodynamics - Basic Equations
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I Force multiplier is
. the effective number

of optically thick lines
. a function of optical

depth parameter t

Disc Wind Anatomy

I Global properties determined by total system luminosity
. Higher luminosity → larger mass flux
. Higher luminosity → faster velocity

I Geometry of outflow determined by relative stellar & disc luminosity
. Higher stellar luminosity → radial flow
. Higher disc luminosity → vertical flow

I Non-axisymmetries primarily at the base of the wind

Clump Density

I Relative Standard Deviation

σ (ρ) =
1

ρ̄

√√√√ Nφ∑
k=0

(ρk − ρ̄)2.

I Maximum Deviation

δmax (ρ) =
1

ρ̄
max

∣∣∣ρk − ρ̄
∣∣∣.

I Clumps ∼ a few times
background density
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Clump Size

I Characterize size using width
of density auto-correlation

I Clumps restricted to base of
wind

I Super-Sobolev in length
l ∼ 108cm� lSob ∼ 107 cm
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Velocity Dispersion

I Time-averaged streamlines
most stationary in fast stream.

I Velocity dispersion comparable
to wind velocity at base

I Velocity dispersion large
compared to sound speed.

Observational Prospects

I Emission spectra ∼ ρ2

I Absorption spectra ∼ ρ
I Line broadening due to velocity dispersion

Future Work

I Can clumps grow further via thermal instability?
I Can self-shielding enhance/suppress the wind by changing ionization

state of gas?
I Are outflows sensitive to the driving spectral energy distribution?
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