Acceleration of electrically charged particles

along an escape corridor from an accretion disk:
 Onset of chaos near a magnetised black hole

Vladimír Karas \& Ondřej Kopáček (Astronomical Institute, Czech Academy of Sciences, Prague)
Devaky Kunneriath (National Radio Astronomy Observatory, Charlottesville, VA)

We examine a mechanism of destabilisation of equatorial orbits of electrically charged particles and dust grains. Near a magnetised black hole, initially bound charges can be accelerated along trajectories emerging from an accretion disk that eventually may escape in the vertical direction. A fraction of these trajectories exhibit chaotic behaviour; even for large-scale, ordered magnetic fields it appears that the chaotic dynamics controls the outflow. We employ Recurrence Plots to characterize the onset of chaos in the medium. The role of black hole spin and the magnetic field strength are discussed, and the maximal escape velocity is computed (based on a recent paper, Kopácek \& Karas 2018, ApJ, 853, id. 53, 2018; arXiv:1801.01576).

Introduction

We explore the mechanism of particle acceleration from an inner accretion disc near a black hole into a compact corona, an further out. To this end we assume the case of an organised magnetic field near a supermassive black hole [1,2]. The set-up of our model is relevant also from another angle: exploring the dynamical properties of the particle motion near magnetised black hole or a compact star [3]. We employ the method of Recurrence Plots and we compare them with Poincare surfaces of section. We describe the Recurrence Plots in terms of the Recurrence Quantification Analysis, which allows us to identify the transition between different dynamical regimes of regular vs. chaotic motion [5]. This new technique is able to detect the chaos onset very
efficiently and to provide its quantitative measure. We find that the role of the black- hole spin in setting chaos is more complicated effficiently, and to provide its quantitative measure. We find that the role of the black-hole spin in setting chaos is more complicate
than initially thought. We discuss appropriate ways of characterizing regularity and the degree of chaotic motion in GR [11].

Our picture includes generic building blocks of astrophysically realistic galactic nuclei. On sub-parsec scales, a supermassive black hole is surrounded by a dense Nuclear Star-Cluster and its gaseous environment [12]. The three components are in mutua interaction, which leads to interesting effects. We focus our attention to the possibility of acceleration of electrically charged particles in potentiar valleys and near magnelic nulf points that can develop, under suitable circumstances, within the interacting magnetosphere of the black hole - star system. Previously, we investigated the motion of the charged test particles around a Schwarrschild body with the rotating dipole magnetic field frozen in rigidly co-rotating magne
motion in the off-equatorial lobes for suitably selected values of parameters of the system [4].

Fig. 1: A sketch of the model set-up. An exemplary trajectory ($\tilde{E}=1.058, \tilde{L}=5 M$) has been launched from the black hole equatorial plane $\theta(0)=\frac{\pi}{2}$ with $u^{r}(0)=0$. An external magnetic test field has been imposed in the vertical direction. Parameters
of the background are $a=0.5 M, \tilde{q} B_{0}=0.1 M^{-1}, \tilde{q} Q=1.03$. In the upper left panel we observe that setting $r(0)=8.4 M$ of the background are $a=0.5 M, \tilde{q} B_{0}=0.1 M^{-1}, \tilde{q} Q=1.03$. In the upper left panel we observe that setting $r(0)=8.4 M$
results in oscillations around the equatorial plane while launching it at $r(0)=8.7 M$ makes it escape. In the upper middle panel we examine the trajectory of the escaping particle in terms of the rescaled radial coordinate $r^{* *} \equiv \frac{r-r t}{r}$. In the case of oscillating "ribbon-like" trajectory; the other one $(r(0)=8.4 M)$ fills uniformly the given portion of the potential valley. The Recurrence Plots are
left panel) a more complicated diagonal pattern of the ribbon-like trajectory (launched at $r(0)=11.5 \mathrm{M}$, middle panel), and left panel), a more complicated diagonal pantern of the riboon-like trajectory ((ainheced
disupted diagonal pattern of the transitional trajectory $(r(0)=11.4 M$, bottom right panel $)$.

Equations of motion and the effective potential: an axially symmetric case
The motion of the test matter (particles of charge q and mass m) is given by "super-Hamiltonian
where π_{μ} is the generalized (canonical) momentum and A_{μ} denotes the vector potential related to the electro-magnetic field tenso as $F_{\mu \nu}=A_{\nu, \mu}-A_{\mu, \nu}, \lambda=\tau / m$ is the affine parameter and τ the proper time. The second Hamilton's equation ensures that the momenta $\pi_{t}=p_{t}+q A_{t} \equiv-$
motion, reflecting stationarity and axial symmerty of the considered background.
Numerical integration of the Hamilton's equations eq. (1) is carried out using the multistep Adams-Bashforth-Moulton solver of variable order. In several cases when higher accuracy is demanded we employ 7 -8th order Dormand-Prince method. Initial values of non-constant components of the canonical momentum $\pi_{r}(0)$ and $\pi_{\theta}(0)$ are obtained from $u^{r}(0)$ (which we set) and $u^{\theta}(0)$ which
is calculated from the normalization condition $g^{\mu \mu} u_{\mu} u_{\nu}=-1$ where we always choose the non-negative root as a value of $u^{u}(0)$. is calculated from the normalization condition $g^{\mu \nu} u_{\mu} u_{\nu}=-1$ where we always choose the non-negative root as a value of u^{θ}
\qquad

$$
V_{\text {eff }(r, \theta ; \tilde{q} \mathcal{M}, \tilde{L}, \Omega)}=-\frac{3 \tilde{q} \mathcal{M} \mathcal{R} \Omega \sin ^{2} \theta}{8 M^{3}}+\left(1-\frac{2 M}{r}\right)^{\frac{1}{2}}\left[1+\left(\frac{\tilde{L}}{r \sin \theta}+\frac{3 \tilde{q} \mathcal{M R} \sin \theta}{8 M^{3} r}\right)^{2}\right]
$$

the rigidly co-rotating magnetosphere, and \mathcal{R} is defined by eq. (5).

Fig. 2: From left to right: a) Final Lorentz factor $\gamma_{\text {max }}$ of the maximally accelerated escaping orbit is shown as a function of the magnetization parameter $|q B|$. Higher values of spin generally lead to more accelerated escaping orbits. b) The value of spin $a_{\text {max }}$ corresponding to the maximally accelerated escaping orbit. Above the value $|q B| \approx 4.5$ the escape of particles is only
permited for $a<1$ and the actual value of $a_{\text {max }}$ (which corresponds to the highest allowed value) falls steeply as $|q B|$ increases. c) The initial radius $r_{\text {max }}$ of the maximally accelerated escaping orbit. d) The ratio $r_{\max } / r_{+}$of the initial radius and the of the outer horizon corresponding to the maximally accelerated escaping orbit. Increasing the magnitude of the magnetizatio parameter shifts the whole escape zone closer to the horizon.

Conclusions

From our analysis we conclude that the motion of charged test particles in the off-equatorial lobes allowed by the test field of the rotating magne dipole on the Schwarrschild background is largely regular. Once the specific energy E is increased (i.e. the off-equatorial lobe is extended) clos to the level where both lobes merge with each other, the chaos may appear. For even higher energies, the lobes merge and chaotic motion become typical but, quite surprisingly, also very stable orbits exist under these circumstances.
Acceleration of the escaping particles changes with the spin as well as with the radius of original orbit. Maximally accelerated escaping orbit for given value of $q B$ corresponds to the highest allowed spin and the lowest radius of original orbit, i.e., is located in the upper left corner of the accelerated escaping orbits.
We demonstrated that the recurrence plots and recurrence quantification analysis are simple, yet powerful tools which allow one not only to decide whether the dynamic regime of the motion is regular or chaotic but also to locate (in terms of some control parameter - energy \tilde{E} in our case) the transition between these regimes with very good precision. Major drawback (cost we pay for its simplicity) of RPs and RQA is the lack of Poincare surfaces of section and RQA measures are able to detect the transitions between the dynamic regimes.

Fig. 3: Characterizing different families of particles that follow free (stable) circular trajectories (free-falling under ISCO) in the Kerr spacetime. Magnetization and the particle charge are set to $q B=-1$ (top left panel) and -5 (top right panel), respectively. the equatorial plane reded) or it eccapes to infinity along the symmerty axis (yellow) Black color denotes the outer horizon of the black hole. The position of ISCO is indicated by the green line. Analysis of the asymptotic behavior shows that only particle with $q B<0$ can reach infinity. Even particles freely falling from the ISCO may still escape the attraction of the center. Furthe of the terminal Lorentz factor with $q B=-4$ (bottom right panel; the color bar denotes the γ factor of the escaping particles).

Magnetized black hole: a non-rotating case
\qquad
The associated magnetic field is modeled as a dipole rotating at angular velocity Ω [3]:

$$
A_{t}=-\Omega A_{\phi}=\frac{3 \mathcal{M} \Omega \mathcal{R} \sin ^{2} \theta}{8 M^{3}}, \quad A_{\phi}=-\frac{3 \mathcal{M} \mathcal{R} \sin ^{2} \theta}{8 M^{3}},
$$

where \mathcal{M} is the dipole moment and

$$
\begin{equation*}
\mathcal{R}=2 M^{2}+2 M r+r^{2} \log \left(1-\frac{2 M}{r}\right) . \tag{5}
\end{equation*}
$$

Alternatively, in order to describe the imposed magetic field we ascume a hor (Walds) solution. Kerr metric is em ployed to describe the case of black hole with rotation.

Abstract

Fig. 4: We trace the trajectory of the test particle $\left(\tilde{q} \mathcal{M}=-5.71576 M^{2}, \tilde{L}=0.87643 M\right)$ launched above the off-equatorial potential minimum of type $\operatorname{Ia}\left(r(0)=5 M, \theta(0)=\pi / 3\right.$ and $\left.u^{r}=0\right)$ at the energy level of $\tilde{E}=0.848$. The trajectory exhibits potential minimum of type Ia $\left(r(0)=5 M, \theta(0)=\pi / 3\right.$ and $\left.u^{r}=0\right)$ at the energy level of $\tilde{E}=0.848$. The trajectory exhibits standard regular behaviour in the Poincaré surface of section $\left(\theta_{\text {section }}=\theta(0)=\pi / 3\right)$. We distinguish $u^{\theta} \geq 0$ (black point) from standard regular behaviour in the Poincaré surface of section $\left(\theta_{\text {section }}=\theta(0)=\pi / 3\right)$. We distinguish $u^{\theta} \geq 0$ (black point) from $u^{\theta}<0$ (red point) in the surface of section. In the third panel we observe the recurrence plot, which is dominated by diagonal patterns as a general signature of regular motion. In the last panel from left the distance to the recurrence point is color-coded.

 Recurrence plots and recurrence quantification analysis Recurrence plots (RPs) as a tool to visualize recurrences of the trajectory in the phase space were introduced by Eckmann et alin 1987 [7]. RP method is based on examination of the binary values that are constructed from the trajectory $\vec{x}(t)$. Constructio of RPs is simple and straightforward regardless of the dimension of the phase space which is a major advantage of this approach Binary values of the recurrence matrix $\mathbf{R}_{i j}$ may be formally expressed as follows:
$\mathbf{R}_{i j}(\varepsilon)=\Theta(\varepsilon-\|\vec{x}(i)-\vec{x}(j)\|), \quad i, j=1$,
where ε is a predefined threshold parameter, Θ represents Heaviside step function and N specifies the sampling frequency which is applied to the examined time period of the trajectory $\vec{x}(t)$. Selection of the norm $\|$.$\| which should be used to detect recurrence$ in the phase space is not straightforward. Although simple norms like L^{2} (Euclidean norm) are usually applied directly, we simultaneity following the standard $3+1$ splitting procedure [8].
Binary valued matrix $\mathbf{R}_{i j}$ represents the RP which we get by assigning a black dot where $\mathbf{R}_{i j}=1$ and leaving a white dot where $R_{i j}=0$. Both axis represent time period over which the data set (phase space vector) is examined. RP is thus symmetric and the main diagonal is always occupied by the line of identity (LOI). Recurrence quantification analysis (RQA) [5] takes number of statis tic measures of recurrence matrix $\mathbf{R}_{i j}$. We adapted CRP ToolBox for Matlab (http://www.agnld.uni-potsdam.de/'marwan/toolbox/) to perform RQA computation.
Acknowledgments. This work has been supported by the project of the Czech Science Foundation (ref. 17-16287S) "Oscillation

References

