The Young Be-Star X-Ray Binary Cir X-1

Author: Norbert S. Schulz (Massachusetts Institute of Technology)

Co-Author(s): Tim Kallman, Sebastian Heinz, Paul Sell, Peter Jonker, William Brandt (Goddard Space Flight Center, University of Wisconsin, University of Crete, Radboud University Nijmegen, The Pennsylvania State University)

Abstract

Accretion conditions and morphologies of X-ray transients containing neutron stars are still poorly understood. Circinus X-1 is a specifically enigmatic case where we observe X-ray flux changes covering four orders of magnitude. We observed Circinus X-1 many times since the launch of the Chandra X-ray Observatory using the high energy transmission grating spectrometer and each time the source gave us a vastly different look. Most recently we caught the source at its very lowest X-ray flux at a flux of 1.8\$\times10^{-11}\$ erg cm\$^{-2}\$ s\$^{-1}. Its spectrum, a single 1.7 keV blackbody spectrum, showed a low emission radius of 0.5 km which implies a high magnetic field between 0.4 and 2.5\$\times10^{{11}} G depending on neutron star radius. Photoionized line emissions suggest a large emission volume and low plasma densities. The observed bluehifts of ~400 km s^-1 and emission volume is consistent with the ionized but distorted wind of a B5Ia supergiant companion confirming a previous identification. We argue that the companion of Cir X-1 is fast rotating Be-star and its stellar disk provides much of the observed excess column densities. We paint a scenario in which a precessing oblate Be-star rotator may explain the vast X-ray flux variations in the past.