

Jonathan McDowell (CXC Science Data Systems)

Chandra data and software

I will report on CIAO (user software) and the standard processing pipeline software, which come into being thanks to:

CXC Data Systems team

software design, development, operation, archive, etc.

CXC Science Data Systems team requirements, documentation, testing, helpdesk, interface with the science community

SAO Scientists:

Jonathan McDowellSDS lead, data model, coordinatesAntonella Fruscione (1/2 time)SDS SAO deputy, Docs and Release leadAneta SiemiginowskaSherpa, Astrostatistics, CatalogDoug BurkeScripts, Releases, Infrastructure, Sherpa, VisualizationFrank PriminiCatalog, Photometry, Source Detection, HRC

SAO IT Specialists:

Kenny Glotfelty Nick Lee Bill Joye

Helpdesk, scripts, docs, legacy expertise Helpdesk, scripts, docs ds9

MIT Scientists:

Dave Huenemoerder Moritz Guenther Dave Principe Melania Nynka Gratings, responses MARX, Sherpa Instruments and gratings Instruments and gratings

Community Support:

Downloads, Documentation, Helpdesk

CIAO 4.12 switched from FTP to HTTPS. There are some differences in how the metrics are collected (bot filtering, incomplete d/l, internal d/l's).

Download by OS

CIAO Installation Options

Downloads (lifetime)

OS	CIAO 4.1	1 CIAO 4.12		
Linux CentOS	249	004	1082	4000
Linux Ubuntu	655	904		1082
OSX ElCapitan	36			
macOS Sierra	62	525	815	815
macOS HighSierra	427			
Source	76		68	
Total	1505		1965	

Documentation

Documentation

- CIAO 4.12 routine roll-out and updates
- Updates to support change to secure https:// server
- Completed changes to use matplotlib in all ciao and sherpa threads.
- New feature added to publishing code to add banner to obsolete pages
- New dax users guide page.
- New ACIS Energy range Why topic
- New analysis topic: calculating fluxes with Sherpa
- Updates to chips to matplotlib conversion guide to help users modify plots created by sherpa

Our first Jupyter notebook embedded on a page!

This notebook is geared towards people who want to calculate the flux of a source for which they have an X-ray spectrum Is is assumed that you have version CIAO 4.12.1 - which was released July 14, 2020 - as it contains bug fixes and improv The presentation is done using a Python (aka Jupyter) notebook, and is broken down into the following sections:

• How do I ...

- calculate a flux?
- generate erros?
- 1. Introduction
- 1.1 How to load Sherpa
- 1.2 How to create a model
- 1.3 Getting help
- 1.4 What model instances have been created?
- . 1.5 The many ways of specifying a model expression
- 1.6 Skip ahead
- 1.7 How do I delete a model instance
- 1.8 Evaluating a model
- 1. Manually calculating the flux
- 1. Setting up the data in Sherpa
- 1. calculate_energy_flux
- 4.1 Absorbed versus unabsorbed fluxes
- 1 How about parameter errors?

Comparing the flux distribution (top left) of uncorrelated (black) and correlated (orange) errors, using the conda-installed Python corner module for visualization.

Long Term Website Trends

Helpdesk

Helpdesk Stats

	2019: 2018-09- 01 - 2019-08-31	2020: 2019- 09-01 - 2020- 09-15
Time period [months]	12	12.5
Number of Tickets	317	379
Median time to 1st contact [hrs]	1.67	1.12
Median time to close [hrs]	7.78	7.82
Maximum time to close [days]	46	84

15% increase in tickets/day (previous year saw 6% increase)

Longest ticket was for use who took 2 months to follow up on a specextract question.

Long Term Helpdesk Trends

Time To Close

Number of Tickets

Iterations per Ticket

Iterations

Helpdesk

• Examples of bugs

- Issues combining type: Il files created with tgextract2 (tgsplit bugs)
- HEADAS|XSpec environment conflict with conda installs
- sherpa bug (regression) when including multiple ARFs (HRC+LETG)

• Example of documentation updates

- Updated Chips conversion guide to include modifying plots generated by sherpa, eg change axis labels.
- new conda download page
- new Why topic discussing on-orbit ACIS energy filters
- new Watchout topic discussing macOSX Catalina security features preventing terminal access to user files and folders.

Examples of calibration questions passed on to science staff

- Continued discussions regarding latest ACIS contamination updates
- MARX subpixel calibration
- HETG wavelength calibration

Community

CIAO Workshop #17 at AAS235/Honolulu Jan 2020

- 1.75 days workshop held on Friday and Saturday before conference.
- Morning talks, afternoon hands on.
- Mostly beginners
 - Many competing workshops

CIAO Workshop #18 (planning)

 3 days of Chandra/CIAO to be presented (remotely) at the Fifth ArAS School for Astrophysics (ArAS SfA-5) in the Kottamia Astronomical Observatory, Egypt, on October 16-23, 2020.

Also planning to have virtual workshop as part of AAS #237

Announcement: SfA-5 moved to online

The plan was to hold the Firth ArAS School for Astrophysics (ArAS SIA-5) in the Kottamia Astronomical Deservatory, Expyt, on October 16-23, 2020. However, the school will be held online due to COVID-19 and the safety of the students and speakers. The next year the ArAS SIA-6 will be in Egypt. Students who register and get accepted for SIA-5 will have priority to be admitted to attend the SIA-6 in Egypt.

> Organized by: The Arab Astronomical Society (ArA: Arab בדחסטונגב בסכודי ترح[لقا] تقريها المحمي]

Co-organized by: The National Research Institute of Astronomy and Geophysics (NRIAC

Long Term Social Media Trends

CIAO 4.12 and Scripts Overview

CIAO 4.12 Highlights

- Single Linux and Single macOSX distribution
- New installation using **conda** package manager
 - Supports multiple python versions: 3.7, 3.6, and 3.5
- CIAO 4.12 requires CALDB 4.9.0; and CALDB 4.9.0 requires CIAO 4.12
- chips plotting package withdrawn; prism (file browser) has been updated to use matplotlib for plotting and GtK+3 (for the user-interface)
- Changes related to Repro-5
 - ACIS now identifies bottom rows of each CCD as bad (acis_build_badpix updates)
 - Updates to support new per-OBI ASOL files with update boresight corrections (a_p_e)
 - New field-of-view algorithm (skyfov)
 - Updates for HRC gain calibrations (pending calibration updates) (h_p_e)
 - Updates for ACIS CTI calibrations (pending calibration updates) (a_p_e)

Contributed Scripts

- Highlights
 - 4.12.1
 - changes consistent with Repro-5
 - changes to plotting to use matplotlib and drop chips support
 - 4.12.2
 - updates to access secure <u>https://cxc</u> and <u>https://cda</u> resources (drop FTP)
 - 4.12.3
 - changes to work better with CALDB 4.9.2.1 indexing scheme
 - blank sky particle background scaling
 - 4.12.4
 - DAX updates
- CIAO 4.13 Planning
 - Multi-OBSID srcflux
 - parallelized specextract

DAX : aka The CIAO Analysis Menu in DS9

• Major updates including

- New Sherpa model parameter editing GUI
- New image calculator (eg add|subtract|multiply|divide frames)
- Tasks now start a progress bar and provide more details about specific tool parameters (equivalent of plist)
- Various new tools have been added including: wavdetect, dmregrid2, ecfcalc, dither_region, simulate_psf, and reproject_image.
- Under the hood: many of the individual scripts have been combined into a single driver script which provides for more consistent look-n-feel to the tasks.
- 20 new instructional videos have been added to the 4ciaodemos YouTube channel.

https://www.youtube.com/playlist?list=PLFvAcNFOvWLgF0cYv-m6jmsWEDo_qqnT1

20

DAX : grating coordinates

Q: Is that feature in my spectrum at 2keV because I'm near a chip gap? Now you can easily find out.

Energy (keV)

Fall 2020 CUC

srcflux

• Updated to compute combined (merged) rates and fluxes from multiple observations.

- using aprates tool to compute uncertainties and upper-limits for merged quantities similar to CSC1 approach.
 - uncertainties will be less accurate in very crowded fields with significant source overlap but for well resolved sources the results are consistent.

Fall 2020 CUC

Example: compare srcflux with CSC2

Fall 2020 CUC

CIAO 4.13 Planning

- Document conda as the primary installation method; ciao-install method still available.
 - Dropping python 3.5, now including python 3.8 as the default for conda.
- Continued bug fixes
 - Grating coordinate via dmcoords
 - Nasty bug when accessing virtual columns (eg RA,Dec) and filtering at the same time.
 - Fixes to support XMM response files
- Maintenance aimed at supporting extended mission
 - Newer OS/compilers
 - Updates to C++ standards

Repro 5 (2020)

- First complete archive reprocessing in 6 years (Repro 4 was 2012-2014)
- Update header keywords etc (like running chandra_repro on all archive data)
- Improved off-axis angles
- Other algorithm improvements
- Pre-compute grating responses
- Uniformly processed archive

Catalog Support

SDS supports the catalog at 2.0 FTE level (Primini, Burke, Lee, with some additional relevant work by others)

Details of progress in I Evans presentation

Primini:

- Statistical Characterization of the catalog
- Aperture Photometry
- Quality assurance and reviews on data, detect list and data products

Burke

- convex hull support,
- quality assurance/reviews of source properties pipeline
- visualization (catalog display in WWT)

Siemiginowska

- fitting

Nynka

- simulations

Burke, McDowell, Lee, Primini, Siemiginowska - Documentation.

CSC 2.1 Aperture Photometry Upgrades

- Replace Sherpa/get_draws() MCMC sampler with pymc3 package
- pymc3 uses a more sophisticated sampling algorithm, leading to more robust results and fewer cases where traces fail to converge
- Specification and prototype code delivered to DS at the beginning of August
- Testing of implementation in L3 pipeline underway

F. Primini – CUC – October, 2020

Sherpa

- Sherpa 4.12.0 standalone was released on Jan 30, 2019 and included functionality based on the CIAO 4.12 (Dec.2019) release and additional bug fixes and improvements.
- Sherpa 4.12.1 was released on July 14, 2020 as part of the CIAO patch release to fix several issues that affected some users analyzing grating data.
 - Sherpa runs under Python 3.5 (when installed with ciao-install) or Python 3.7, 3.6, 3.5 (when installed using conda package manager). It is expected that it will work with Python 3.8 but testing has been limited.
 - The main updates in 4.12.1 include:
 - Improvements to the flux calculation code (e.g. calculating the unabsorbed flux of a source)
 - Continued improvements for regrid support (using a higher-resolution model which gets re-binned to match the data)
 - Support NumPy version 1.19 for conda users
- Sherpa 4.12.2 planned for release Oct 15

- Major updates:
- Further improvements to support models on arbitrary grid (i.e. regridding models).
- Continued improvements to flux calculation seen in CIAO 4.12.1, this time for the sample_energy_flux and sample_photon_flux commands, which allow users to calculate realistic errors on fluxes.
- Fixed a number of annoying corner cases when grouping and filtering PHA data and handling background datasets.
- Fix and updates to the resample_data command, which estimates how asymmetric measurement errors can affect fit results and parameter uncertainties.
- Many improvements to plotting (now using matplotlib), including support for the alpha parameter for displaying semi-transparent data or models plots.
- XSPEC convolution models are now supported in Sherpa.
- XSPEC support up to 12.11.1, but CIAO 4.13 will remain with XSPEC 12.10.1 to support our build platforms. Note, license issues in the XSPEC code.
- Updates for the Python ecosystem (matplotlib and Python).
- Documentation: Threads —> Notebooks, synchronize docstrings —> ahelp files

Improvement to Sherpa PHA plots (plot_fit): use histogram mode and show gaps for ignored ranges

/home/dburke/sherpa/sherpa-master/sherpa-test-data/sherpatest/3c120_pha

Improved multi order (PHA2) plot showing use of plot opacity and improved handling of start and end bins

1299 publications in ApJ, AJ, MNRAS and A&A use Sherpa (since 2001 and including astro-ph abstracts)

- 293 citations to Freeman et al 2001 SPIE paper
- 68 research papers published in 2020
- 7 PhD theses listed in ADS that used Sherpa

Instruments Gratings

Pipeline / Event processing tools:

HRC-S/LETG: calibration files have been updated which implement improved time-dependent gain correction which will lower the non-X-ray background.

This is automatically applied by hrc_process_events, given the current Calibration Database.

(A User-applied spatial/spectral filter file is still required from the Calibration Group to achieve full benefit, this will be released as a stand-alone file when ready, but also included in future CALDB releases.)

Calibration support:

We participated in a study of HETG response dependence (QE and order-sorting) on CCD temperature. No significant effects were found (<3%) allowing CXO operations to use HETG at warm attitudes. The result also means that we do not need to include any new temperature-dependent effects into our standard suite of ACIS event processing software.

PCA analysis of ACIS gains carried out, suggests possible simplification of gain map creation (Gunther).

Responses:

Grating responses ("ARFs" and "RMFs") are now computed in the pipeline. Repro-5 is underway, so the archive will be retroactively populated with these files over the next year.

TGCat:

- (still) undergoing porting to current OS (to fix nonback-compatible changes in underlying components (mysql and php) (this should be invisible to user);

- next: enhance plotting functions; start re-write in modern web language (e.g., Django), which is easier to maintain.

- Support odd detector/grating combinations by providing necessary calibration files, modifications to ciao tools, and analysis guides for when these are useful and how to propose. (E.g., HRC-I/HETG, for recovering the ability to obtain O VII He-like at high resolution, essentially lost to HETG due to ACIS filter contamination.)

- Support off-axis grating RMFs. Current grating calibration data is for onaxis point sources. Off-axis, dispersed lines are broadened, due to the off-axis PSF (and this is currently ignored by response software, and must be included in the source model).

- Improve hot/bad-pixel handling; some bad pixels (with long tails) get through current algorithms, and may lie on dispersed spectra. They are currently handled manually during V&V.

- Improve order-sorting by bringing to current CCD responses, and making more dynamic. The current order-sorting tables are static.

- Release HETG crowded-field confusion analysis code. This has been prototyped and is being applied to some cases of HETG observations of star clusters (e.g., Orion, and NGC 3603).

- Grating analysis cookbooks: Line shifts in HETG, simulating HETG spectra

- Document use of 2nd, 3rd order HETG spectra, providing tutorial examples and threads (given some deep observations available now, there can be useful information in 2nd and 3rd orders). - Document, through threads and examples, background handling in analysis for LETG/ACIS, since it is very important for some parts of the spectrum (much more than for HETG/ACIS).

- MARX: continue with improvements to sub-pixel grade distribution simulation.

PSF

ChaRT

- Updated to CentOS 7
- Updated to CIAO 4.12 (Python 3)
- Drop ftp:// support; now using https://

ChaRT

ChaRT server upgraded to CIAO-4.12, now running on CentOS7, and delivery of rays is now via https:// rather than ftp://.

2020 CUC Report

Visualization

SAOImageDS9

• Releases

- Version 8.1 released in Dec 2019 with CIAO 4.12
- Version 8.2b1 released in Feb 2020
- Version 8.2rc released in Sep 2020
- New Features 8.2
 - New Footprint Server support for Chandra and Hubble Legacy Archive
 - New built-in Prism feature, display and analyze FITS file structure, similar to CIAO Prism application
 - New Theme (Dark Mode) support for Linux and Windows ports
 - New Chandra Public Archive interface
 - Improved Mask support including blending of multiple masks
 - Support Catalog FITS Tables
 - Improved support for Analysis Task parameter dialogs
 - Improved support for Plot Dialogs, including new control panel GUI

SAOImageDS9 - Chandra Footprint Server

		X Cł	nandra (NASA/0	CXC)					
File Edit	Name Server	Preference	s						
Object									
Name									
α 17:	21:03.6864	δ	-37:26:1	9.826 fl	:5	Update			
Radius 33.	58406	arcmin							
Instrument									
ACIS-S	ACIS-I 🔳 HRC	-s 🔳 Hrc-i							
Table									
Filter						Edit			
						Edit			
Sort			 Increase 	Oecrea	ase				
Found 15		1							
ObsId	target name	obs date	RA	Dec	prop id	pi_last 📤			
1934	XTE J1723-37	2001-09-04	4T 260.90875	-37.6623888	2400819	MARKV			
2785	SNR G349.7+	2002-05-13	3T 259.504166	€-37.4469444	3500339	Slane			
8157	1RXS J17191	2007-10-26	6T 259.792916	€-36.881	8910041	Murray			
10102			LT 260.2625	-37.4472222		Slane			
10131	PSR J1718-37	2009-02-19	9T 259.541666	€-37.313889	10500758	McLau			
10520			9T 260.212083		10910312	Gaensl			
10525			3T 259.845833		10910312	Gaensl			
10766			5T 259.541666		10500758	McLau			
10767			3T 259.541666		10500758	McLau			
14806	XMMU J17205			-37.4479166		Gotthe			
20312	G350.1-0.3			-37.4472222		Reynol			
20313			4T 260.2625	-37.4472222		Reynol			
21118			3T 260.2625	-37.4472222		Reynol			
21119			7T 260.2625	-37.4472222		Reynol			
21120	G350.1-0.3	2018-07-05	5T 260.2625	-37.4472222	19200368	Reynol 🗸			
4			1	1	1	<u> </u>			
Status Row 4									
Retrieve	Can	cel	Filter	Clear		Close			

SAOImageDS9 - Themes (Dark Mode and Gnome)

						X	SAO	Image de	s9						
File Edit '	View	Frame	Bin Zo	om	Scale	Color	Regi	ion WC	s 4	Analysis	5 He	lp			
File		acisf10	102N00	2_e'	vt2.fits[E	EVENTS]						8.			and the second
Object		G350.1	-0.3									X		1000	다만 언
Value			2									1		1.52	
FK5		17:21:	18.1349	δ	-37:23	:15.763					E	-	→ X	62.5 m	•
Physical		37	46.5	у	44	70.5				1					
Image		425 y 606]										
Frame 1			1]		0	۰			L	57		734°		<u> - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -</u>
file ed	it	view	frame		bin	zoom		scale	с	olor	reg	ion	wcs	analysis	help
bin in	bin c	out	bin fit		bin 1	bin	2	bin 4	Ļ	bin 8	8	bin	16	bin 32	bin 64
		and a state													

SAOImageDS9 - Plot Control Panel

SAOImageDS9 – Prism (experimental support)

			X Prism						
File Edit T	able								
Extensions			leader Keywords						
Extension	Type Dimensions	A	TENSION= 'BINTABLE'	/ bin	ary table extens	ion	-		
PRIMARY	image NULL		ITPIX =	8 / 8-b	it bytes		- h		
EVENTS	table 19 cols, 1287386 rows		AXIS = AXISI =		imensional binar th of table in b				
GTI	table 2 cols, 1 rows		AXIS2 =	1287386 / num	ber of rows in t	able			
GTI	table 2 cols, 5 rows		COUNT =	0 / siz	ajarea				
GTI	table 2 cols, 1 rows	- 111	COUNT = FIELDS =	-,					
GTI	table 2 cols, 6 rows		KTNAME = 'EVENTS '	/ name of this binary table extension					
GTI	table 2 cols, 2 rows		DUNAME = 'EVENTS		DM block name				
	table 2 cols, 2 rows		ΓΥΡΕ1 = 'time ' FORM1 = '1D '	<pre>' / S/C TT corresponding to mid-exposure ' / format of field</pre>					
GTI	table 2 cols, 5 rows		JNIT1 = 's '	, 101	nat of field				
			TYPE2 = 'ccd_id		reporting event				
			FORM2 = '11 '	/ for	mat of field				
<u> </u>							Þ		
Extension Da									
Row	timeccd_id	node_id	expno	chipx	chipy	tdetx	t		
1	3.59271e+08 2	1	3	416	92	3153			
2	3.59271e+08 2	0	3	76	253	3314	4		
3	3.59271e+08 2	3	3	839	366	3427			
4	3.59271e+08 2	2	3	684	737	3798			
5	3.59271e+08 7	0	3	206	31	4123			
6	3.59271e+08 7	1	3	474	203	4391	:		
7	3.59271e+08 7	2	3	636	211	4553			
8	3.59271e+08 7	1	3	300	241	4217			
9	3.59271e+08 7	1	3	366	275	4283			
10	3.59271e+08 7	1	3	284	367	4201			
11	3.59271e+08 7	2	3	688	476	4605			
12	3.59271e+08 7	0	3	94	483	4011			
13	3.59271e+08 7	2	3	651	498	4568			
14	3.59271e+08 7	1	3	397	526	4314			
15	3.59271e+08 7	0	3	248	542	4165			
16	3.59271e+08 7	0	3	69 96	569	3986			
4		,					Þ		
Load	Clear Image	Plot His	stogram First	Next	Previous	Last Clo	ose		