

ACIS Update

Chandra Users Committee September 28, 2023

ACIS continues to function nominally and produce high quality data

Steiner (SAO)

- All 10 CCDs are fully functional
- Electronics are nominal, primary units are still in use
- Flight software is nominal, modified 8 times after launch for bug fixes and enhancements
- Over 90% of GO & GTO observations use ACIS

Future Challenges:

- $\boldsymbol{\cdot}$ ACIS is now the only radiation monitor
- Contamination layer continues to accumulate, further degrading the low energy response
- Warmer electronics temperature limit dwell times and # of active CCDs
- Warmer focal plane temperatures degrade the spectral response

Cycle 23 GO & GTO Observing Statistics

Instrument	Grating	# of Obs	% of Obs	Time(ks)	% of Time
ACIS-I	NONE	296	30.3	5700	33.4
ACIS-S	NONE	556	57.0	9056	53.1
ACIS-S	HETG	75	7.7	1638	9.6
Total			95.0		96.1

no GO impact

- Flight SW updated on 19 September 2023, 8th modification since launch
- Four "patch loads" were included in this update:
 - 1. Alternating Exposure Mode bias computation bug fix GO impact
 - 2. SW reports that science is idle when all video boards are powered off *minimal or*
 - 3. SW reports more diagnostic information when the BEP reboots due to a bus error
 - 4. SW forces a new bias map computation when a FEP has been powered off before the current science run

Alternating Exposure Mode:

- Allows the Observer to specify two different CCD frametimes for an observation
- Typical use is one short frametime and N long frametimes
- WARNING: if the short exposure is smaller than the minimum exposure required to read out all selected pixels, there will be deadtime
- The bug is a possible infinite loop during the bias computation
- The bug has been present since launch, the observation that triggered the bug had one short exposure and one long exposure
- 165 alternating exposure mode runs have been executed in the mission
- This mode is rarely selected by GOs at this point in the mission due to the deadtime issue, two runs in Cycle 15 and only one since Cycle 19
- The CXC put a moratorium on alternating exposure mode runs until the patch was active, the moratorium has now been lifted

Chandra OCC: 19 September 2023, 8pm-10pm EDT

Paul Plucinsky

ACIS Flight SW Update

Gregg Germain (SAO) John ZuHone (SAO) Jack Steiner (SAO) Jim Francis (MIT)

ACIS Flight SW Update

Ken Gage (NGST)

CXC

Paul Plucinsky (SAO)

> Mark Bautz (MIT)

Catherine Grant (MIT)

ACIS Flight SW Update

- Flight SW update execution was smooth
- The entire team (ACIS Ops, MIT flight SW, FOT) put in a lot of preparation to make this smooth execution possible
- But *most* of the credit goes to Peter Ford who was on-line supporting the activity remotely
- This patch and all other ACIS patches were developed by Peter and Jim
- The entire Chandra team owes our gratitude to Peter for developing and maintaining the ACIS flight SW for 24 years !!

Peter Ford (MIT) circa Aug 1999

Paul Plucinsky

CXC

ACIS default dither has doubled since Oct 2022

- Improves ACA performance
- Lowers dosing accumulation near aimpoint on ACIS
- New dither is 32"x32" full-amplitude for full frame observations or subarray >128pix
- Pattern-period has doubled to 2ks and 1.4ks for y and z axes, preserving slew rate
- Dither is halved along short-axis for 128pix subarray
- No expected impact on GO observations

Figures 4.27-4.30 from the Proposers Guide

Paul Plucinsky

3.0e+10

- $\boldsymbol{\cdot}$ ACIS is now the only radiation monitor on Chandra
- Solar Cycle 25 is predicted to peak in late 2024 or early 2025
- There are have been three manual radiation safing actions, and no autonomous safing actions in 2023
 Germain (SAO)
- Fluence on ACIS this year is approaching the highest values seen in previous years
- ACIS can not be as sensitive a radiation monitor as the EPHIN instrument was

Yearly Accumulated Fluence 2000 to 2023:262

https://helioforecast.space/solarcycle

_____ 20230928

- -109 C ACIS-S and ACIS-I imaging observations that do not benefit from the most accurate spectral response
- -111 C ACIS-S observations that do benefit from the most accurate spectral response
- -112 C ACIS-I observations that do benefit from the most accurate spectral response
- -105 C ACIS-S/HETG observations with a SIM Z offset of -6.0 mm or more negative such that the dispersed spectrum is closer to the readout [Not implemented yet]
 ZuHone

- relaxation of ACA temperature limits have allowed longer dwells at pitch angles around 90 degrees which benefits the ACIS FP temperature and electronics temperatures
- OBSID 27175 in the AUG2123 week was a 101.6 ks observation at a pitch angle of ~90 degrees for which the FP temperature was at -119.7 C for almost the entire observation

New Temperature Limit Handling Package

- Thermal limits are becoming more complicated and varied many are dynamic, changing with spacecraft state
- A new limits infrastructure package has been developed, chandra_limits, that provides a simple and unified interface to thermal limits that will be used across the project, in a variety of scenarios and levels of planning
- Handles limit plotting, violations checking, etc.
- Currently working on interfaces to the SOT program acis_thermal_check and the FOT Matlab tools

ACIS FP Temperature During Perigee Passages *CXC*

- The ACIS FP temperature significantly increases during radzones due to earthshine in the ACIS radiator FOV—this was exacerbated recently as we passed low perigee
- We want to keep the ACIS FP temperature below -80 C to avoid increase in CTI
- The ACIS FP thermal model has a 6 C buffer against this -80 C limit, and we are running up against this buffer frequently in planning now, but this is successfully keeping us away from -80 C
- ACIS Ops continues to monitor the performance of the model and the data at every passage

Low Input Voltages during Perigee Passages CXC

- ACIS Input voltages have dropped below their Yellow Low limits during a recent perigee passage
- There is long term, slow degradation in the solar array output
- In addition, there are short term (~minutes) decreases in solar array output due to heating of the arrays during perigee passages
 Germain (SAO)
- Yellow Low limit = +24.5 V
- Red Low limit = +22.0 V
- The concern is that the ACIS electronics may not function as expected if the input voltage were to drop below +22.0 V

Bissell (NGST)

