Mission Planning Updates

Scott W. Randall

On behalf of SOTMP: Daniel Castro, Ewan O'Sullivan, Josh Wing, Tara Dowd, Iris Wang, Kevin Paggeot

Chandra User's Committee Meeting (October 2024)

S. W. Randall (Chandra Mission Planning)

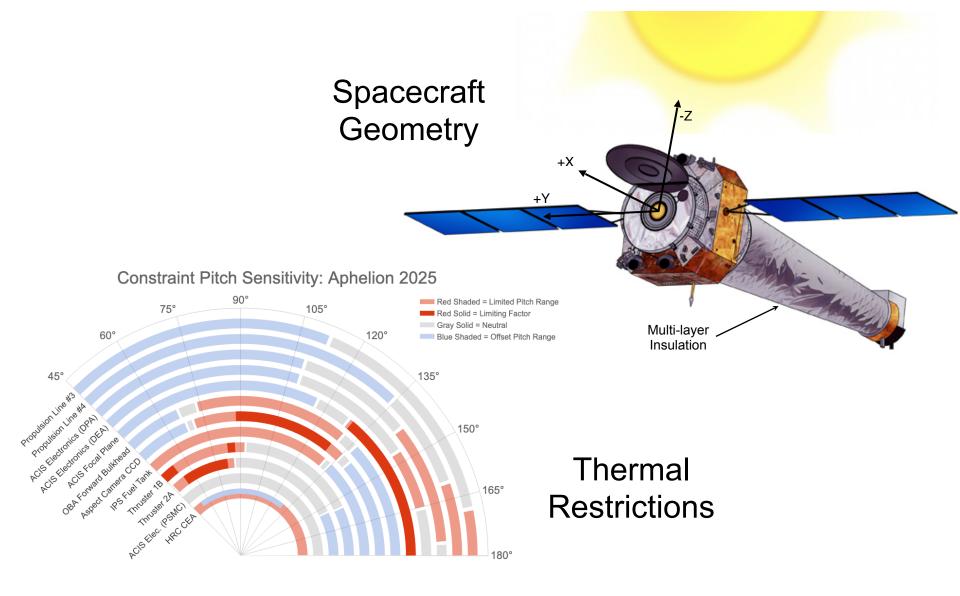
Overall Context for Mission Planning

Goal:

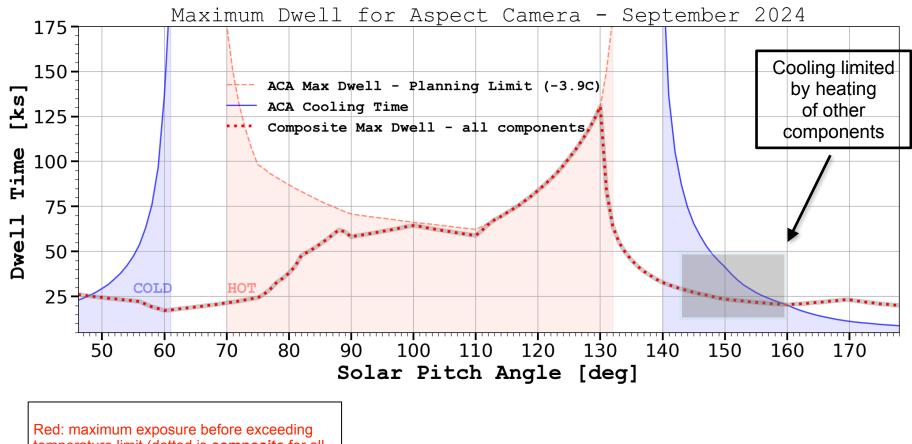
Maximizing the science return of the mission in the presence of constraints:

Observation constraints, e.g.,

coordination time windows continuity of observations monitoring series and observation grouping roll constraints phase constraints


Engineering constraints, e.g.,

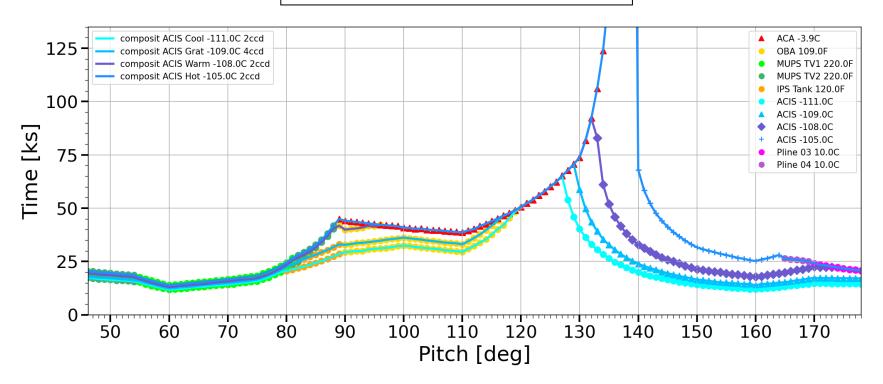
thermal constraints star field constraints momentum management Sun, Moon, Earth, bright X-ray source avoidance


Chandra User's Committee Meeting (October 2024)

S. W. Randall (Chandra Mission Planning)

Chandra Thermal Restrictions

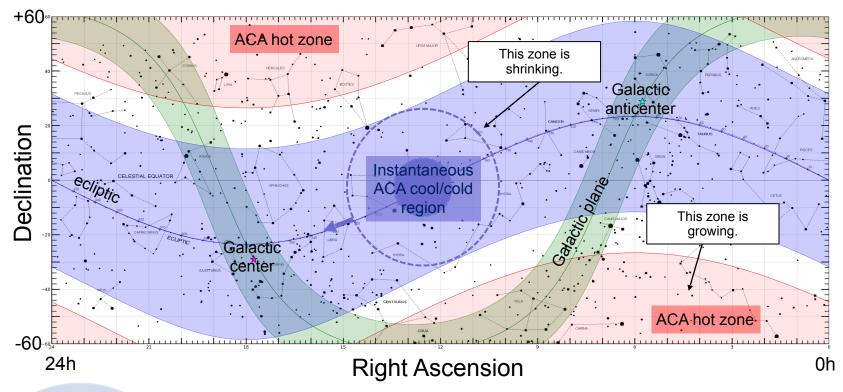
Thermal Balance: A Summary

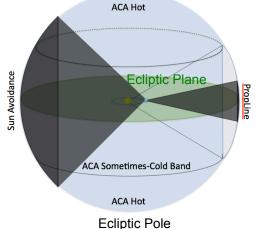

Red: maximum exposure before exceeding temperature limit (dotted is **composite** for all components).

Blue: minimum cooling time required to return to state from which another max dwell possible

Chandra User's Committee Meeting (October 2024)

Thermal Balance: A Summary


Composite Maximum Dwell for September 2024



- "Hot ACA" region (~ 90<pitch<130) now more favorable compared with other regions
- We continue to work hard to stay ahead of rising temperatures with component planning limit increases, wherever possible.

5

Constraints: Sky View

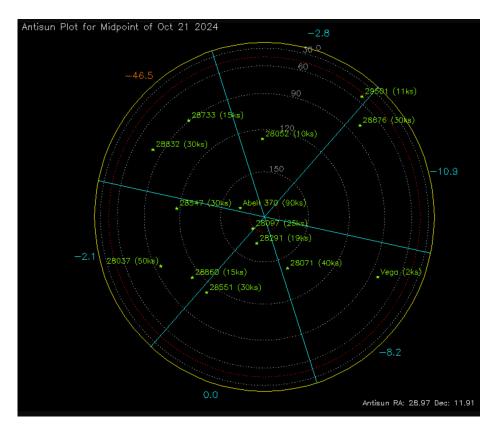
- The sometimes-cool/cold ACA/MUPS (-Z) region covers a band in the sky
- Although the story is no longer dominated by the ACA (rather by MUPS vs ACIS), the anti-Sun region is still extremely valuable for thermal management
- The cool region is shrinking and the hot ones are growing with time

Chandra User's Committee Meeting (October 2024)

6

Impact on the Long Term Schedule

Thermal balance Segment: 34 limit; 5.30d, used	4.62d = 87.17% 21-pct-2024 00h to 28-0ct-2024 0	*NEW* Sky Distribution Metric								
#Orbits: 2 Orbit Time: 458.08ks	LTS Time: 397.85ks HRC Time: 32.00ks skybal:	-70.50 #Targets: 17								
Thermal Budget: cold budget aca : +44.0 mups : +49.8 ipstank : +84.1 dpa : +9.9 hrc : +141.5	momentum axes momentum totals P_x : +9.85 P_tot : 15.36 P_y : -11.52 P_bal : 5.36 P_z : +2.49									
seq# obs name	time RA dec Roll Range Pitch Range	SI R 0 grat observer Type A0 0R# SF TC RC PC UC PU SC Mlt CRem FP								
201661 28733 NGC 2440 201686 28832 zeta Puppis 291711 28381 Vega 291713 28383 Vega 291713 28383 Vega 402491 28037 SMC 2857 503455 28052 Crab Nebula 503474 28071 AT2024qfm 601591 28547 NGC1512 601617 28551 NGC7496 601622 28860 LEDA407 704636 29501 NSA 91579 704981 4 28591 Abell 370 704981 4 28591 Abell 370 705100 28291 SDSS J005824.75+0041 802120 28676 SpARCS J105111+58180	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ACIS-S 5 2 HETG Gunderson GTO 25 0 N								
• Constructing th	o LTS is avtromaly challenging	Cycle Stars Constraints Coordinations								


- Constructing the LTS is extremely challenging. Auto-scheduling software, developed in cooperation with a software team at STScI, allowed the continued generation of efficient schedules. The initial schedule for "Cycle 25" was completed in September 2023, much earlier in the process than just a few years ago.
- The Cycle 26 LTS has been delayed by budget uncertainties, but is now under construction. Fortunately, we were able to extend the Cycle 25 LTS into December 2024.

Chandra User's Committee Meeting (October 2024)

S. W. Randall (Chandra Mission Planning)

A New "Sky Balance" Metric

- Maneuvering has become increasingly important for detailed weekly planning, due to smaller observation durations and a greater number of splits.
- Previously, the sky distribution of targets in a given week was not quantitatively considered when constructing the Long Term Schedule.
- Developed a metric to quantify the "goodness" of the sky distribution of a collection of targets. The LTS is now designed to keep this metric below some (empirically determined) critical value each week.
- Consider total *negative* thermal impact in each of 6 (optimally chosen) sectors.
- Significantly reduced the typical amount of "dropped time" each week, leading to a much more stable LTS.

Chandra User's Committee Meeting (October 2024)

Machine Readable ORLs

- We have implemented a new machine-readable ORL format, built around YAML formatted key/value pairs.
- This allows automated checking of most scheduling constraints during detailed weekly planning.
- It also sets the groundwork for eventually developing assistive scheduling software, which would help automate the building of weekly schedules (similar to what has been done with Spike for the LTS).

Updated Spike GUI

- The GUI tool that for many years we used for weekly planning needed to be replaced, as it was based on an obsolete, unmaintained protocol.
- Working with developers at STScI, we now have a web browser based tool, that is not only maintainable, but tracks various thermal and other constraints accurately when working on scheduling.
- This tool has significantly streamlined weekly planning and LTS maintenance for SOTMP.

Chandra User's Committee Meeting (October 2024)

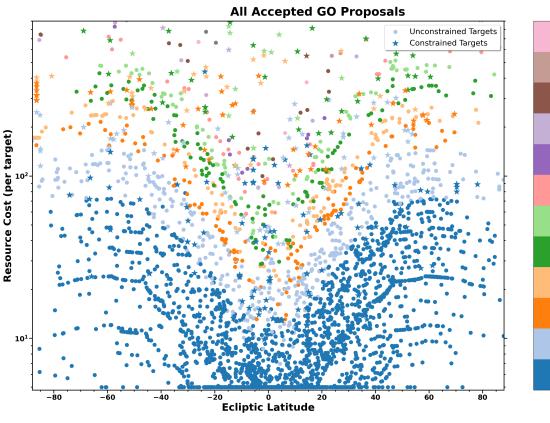
Updated Spike GUI

	Chandra - Google Chrome											>																					
O localhost:8040/chandra-gu/main																																	
	Reset GUI	UnFocus Save	Save As	610 obse	rvations			Chandra Long-term Schedule											lts25-22														
Stat	<u>Obs</u>	Target	Prio AQ	Seq#	Mode	ObsClass	Var: X283	379 (#105)). Targe	t name: X	28379			focus	options																	Focus.	
U	X28333	Abell 3112 W	7 25	802148	ACISIO	GO	RA: 279.237 (18h 36m 56.8s), Dec: 38.766 (38d 47m 8s) Exp. time 2006. sec. Priority 5, Mode: HRCIO Observer Class: GAL Assigned to bin 8 (time 56 = 14-Oct-2024 00h), conft (timi conft: 0), pref: 10 Constraints: dd, values total 485, in domain 31 Constraints:					focus options Assignment status All V Observer Class All V														Sort							
U	X28334	Abell 3112 N	7 25	802149	ACISIO							_							<u> </u>										Assign				
U	X28335	Abell 3112 E	7 25	802150	ACISIO							ed status			y All V		ned to b	_	_										UnAssi Lock	ign			
L	X28338	ACT-CL_J0034.4+0225	5 25	802153	ACISSO	GO GO					Ignor	Ignored status All V Mode All V Name contains														UnLock	ĸ						
U	X28339	G29-38	5 25	201666	HRCIO	GO					AO															Ignore							
L	X28342	NGC 2287	5 25	201669	HRCIO	GO	(WINDOW	V (2024 10	9100	0.0) (202	4 10 31	000);	(28379)	Obse	Observation IDs													Unigno					
L	X28343	NGC 2287	5 25	201670	HRCIO	GO								□is														Assign All UnAssign All					
L	X28345	NGC 2287	5 25	201672	HRCIO	GO											.,			Priori												Lock Al	II.
L	X28346	NGC 2287	5 25	201673	HRCIO	GO															2	Dissolas										UnLock	
L	X28352	PSR J1101-6101	5 25	503496	ACISIO	GO														Confl		Dismiss											Conflicts
L	X28356	PSR J1813-1749	5 25	503500	ACISSO) GO														Clear		Reset										Print Fe	
U	X28365	PSR J0901-4046	5 25	201679	ACISSO) GO														4	6	Apply										Status.	
L	X28378	HZ43	5 25	291708	HRCIL	CAL																											
L,	X28379	Vega	5 25	291709	HRCIO	CAL																											
L	X28380	Vega	5 25	291710	HRCSO																												
L	X28381	Vega	5 25		HRCSO		. 🔺																										
calenda	ar date	8/19 9/1	10	W1		11/1	12	1		1/1		2/1		3/1		4/1		5/1	1		6/1		7	/1		8/1		9/1		10/1		110	
bin		0 1 2 3	4 5 6	. 7 0	0 1	0 11 12	12 14 1	E 16 1	7 10	10 20 2	1 22 7	2 24	25 26	27 29	20 20	21 22	22 2	35 36	37 38	B 39	40 41	42 4	3 44 4	45 46 4	7 48	49 50 1	51 52	53 54	55 56	57 58	59 60		63 64 65
		1	4 5 6	, , ,	9 1	0 11 12	13 14 1	10 1	/ 10	19 20 2	1 22 2	3 24	23 20	27 28	29 30	31 32	33 34	30 30	31 30	5 39	40 41	42 4	-3 44 1	+0 40 4	7 40	49 30 1	JI J2	33 34	33 30	37 38	39 00	01 02	03 04 05
prefere	nces	ō	_																														
suitabili	ty	1																															
conflicts		2																															
connice	5	0										- T - T	- T - T								L L	1 I.			- T - T								
time (ks	3)																																
momen	tum																																
aca																																	
											_																						
mups																																	
dpa																																	
							_																_										
hrc																																	
hrcmax																																	
bin		0 1 2 3	4 5 6	5 7 8	9 1	0 11 12	13 14 1	15 16 1	7 18	19 20 2	1 22 2	23 24	25 26	27 28	29 30	31 32	33 34	35 36	37 38	B 39	40 41	42 4	3 44 4	45 46 4	7 48	49 50 1	51 52	53 54	55 56	57 58	59 60	61 62	63 64 65
vv.ddd		in minimum i	փուսվու	minninn		minnninnn	hundundu	աիսաիս	ոփոստիո	արադա	արուղո	արոսի	ուսիստի	minn			mini	ninnninnn	humhun	minnin	mini	tinnin	ալսուր	արտոր	արուղո	ափուսփո	minmi		իստիսով	minni	ոուիսոսի	արոսի	ապատկաստվ
TJD		24.232 24.246	24.260 24	.274 24.2	88 24	.302 24.3	6 24.330	24.344	24.358	25.006	25.020	25.034	25.048	25.0	25.07	6 25.09	0 25.	104 25.11	18 25.	132	25.146	25.160	25.174	25.188	25.202	25.216	25.23	25.2	44 25.25	25.27	2 25.286	25.300	25.314
day (tin	ie)	4																															•

Notable Temperature Limit Increases

- As of the Fall 2023 CUC Meeting, we did not expect any further significant temperature limit increases for the MUPS, severely limiting maximum dwell times at forward sun pitch angles.
- Subsequently, a detailed engineering investigation revealed that allowing the MUPS to reach significantly higher temperatures was very likely to be safe. As a result, we are in the midst of a series of planned step increases to this limit.
- This has been a massive boon for scheduling, and for Chandra's maximum dwell time capabilities.
- Furthermore, thanks to a significant calibration effort, we have identified classes of observations that can be done at higher ACIS focal plane temperatures, greatly improving scheduling flexibility. For Cycle 25 ACIS obs:
 - -105 C FP Limit: 31%
 - -108 C FP Limit: 18%
 - -109 C FP Limit: 4%
 - -111 C FP Limit: 47%

New Thermal Database

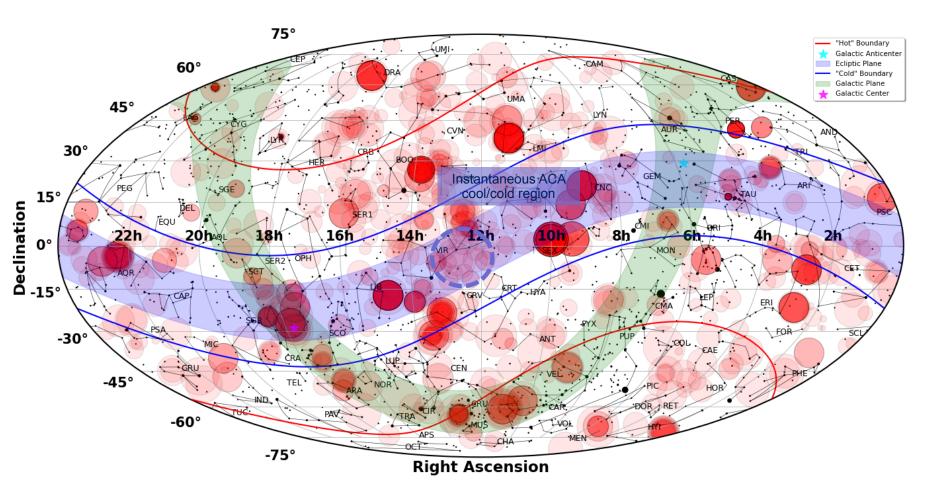

- Calculation of the thermal impact of a given observation on the various satellite components depends on the solar pitch angle, the instrument setup, and the science requirements.
- Previously, these impacts were calculated on the fly, which is expensive when one wants to know the impact of a given observation (or set of observations) on each thermal component throughout the year, e.g., when deciding where to place a new observation in the LTS.
- We have implemented a new thermal database, which pre-calculates these values for all ObsIDs throughout the year. The database is automatically updated when a new observation is created, or when a relevant parameter for an existing observation is updated.
- This drastically reduces the runtime of the code used for LTS construction and weekly maintenance, improving the efficiency of these tasks.

Resource Cost

510

240 Å

60


Resource Cost (RC) values for observing programs from Chandra Cycles 14-26. Starred targets have science observing constraints, circles are unconstrained.

- Introduced in cycle 22. •
- Replaces "constraint" categories" (easy/average/ difficult) used in previous cycles. 360 E
 - Calculated for all non-TOO targets.
- On current (arbitrary) scale, peer review assigns total cost ~27,000.
 - For Cycle 26: minor fixes, and pitch weighting changes to not as strongly disfavor HEL targets.
- Prototype resource-cost-like scoring for TOOs developed.
 - Currently only the number of triggers by category are tracked, so a fast 100 ks TOO is equivalent to a fast 1 ks TOO.
 - Prototype already useful in highlighting difficult or infeasible TOO proposals

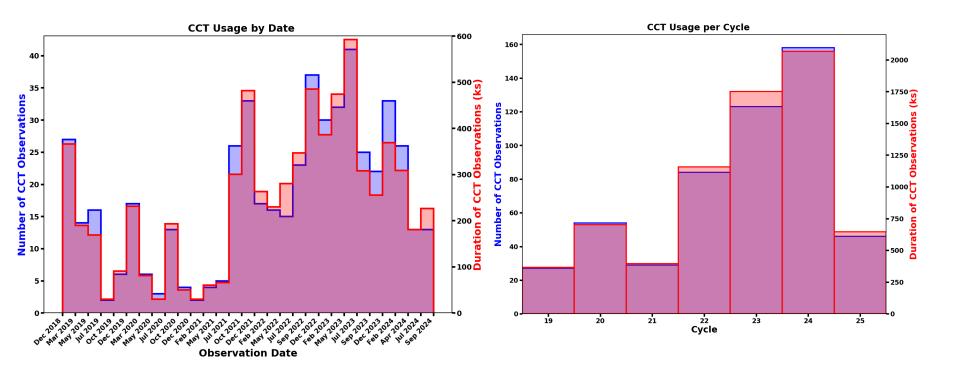
13

Target Distributions

Exposure Scaled Scatterplot of All Cycle 26 Targets

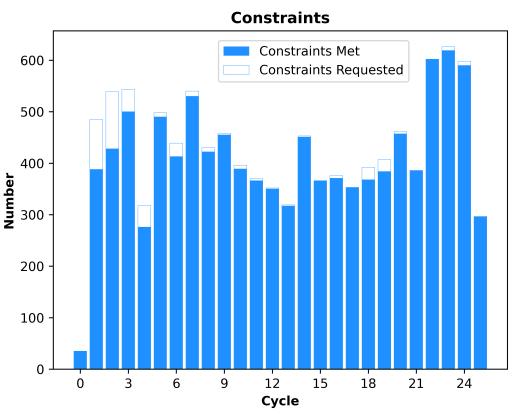
Chandra Cool Targets (CCTs)

Sky Distribution of Proposal Priorities of All Unobserved CCT Targets 75° alactic Plane Priority 1 Galactic Center 60° Priority 2 actic Anticenter 45° 30° 15 Declination O^c -15-60° -75° **Right Ascension** Cold Time per Bin (Ms) 40 35 30 25 -20.5 20 -15 -10 JAN012A EC2A2A Week

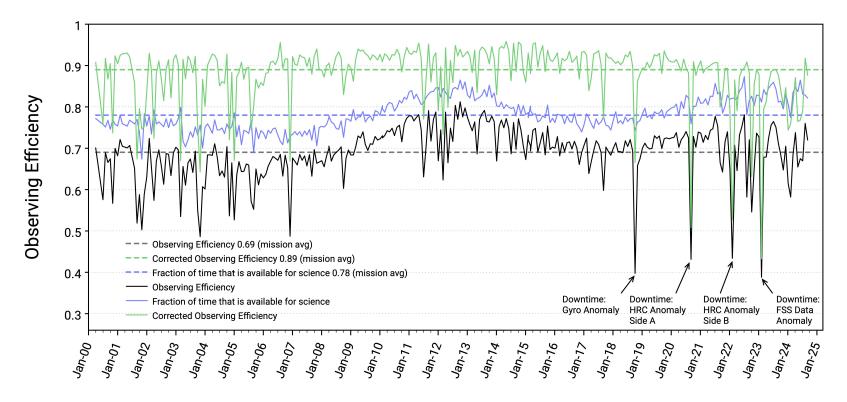

- 22 programs
- Include:

galaxy clusters, ULXs quasars, AGN, HMXBs CVs, SFRs, cool stars, survey counterparts, radio galaxies, star clusters, Fermi sources, dwarf galaxies, symbiotic stars

10 ks ≤ t ≤ 35 ks; |b| < 40°


- Includes: ~19,000 targets ~400 Ms in time
- Adequate cooling time in any week

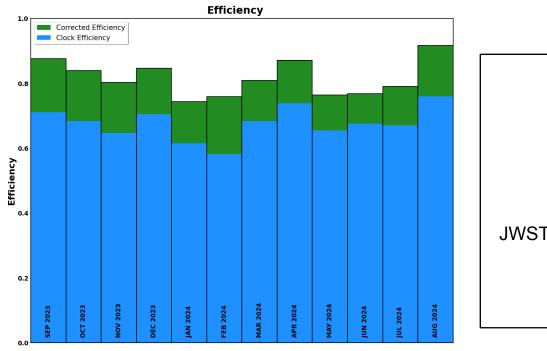
Chandra Cool Targets (CCTs)


CCT usage has increased in recent years, although this is probably partially driven by recovery from operational events (e.g., HRC power anomaly, IU reset, Fine Sun Sensor issue), and by large programs with particularly difficult star fields observed prior to the ACA flight software patch

Science Constraints

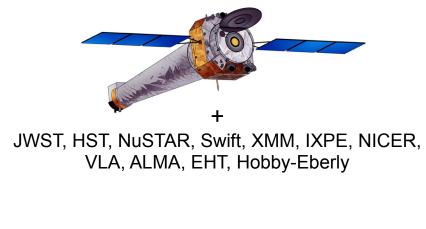
- Difficulty associated with meeting constraints is increasing due to spacecraft thermal limitations (e.g., decrease in maximum dwell times, increasing number of star field constrained targets).
- However, we continue to meet approved observing constraints successfully.
- Most missed constraints are due to solar flares and other operational events that lead to schedule interruptions.

Mission Efficiency History


Date

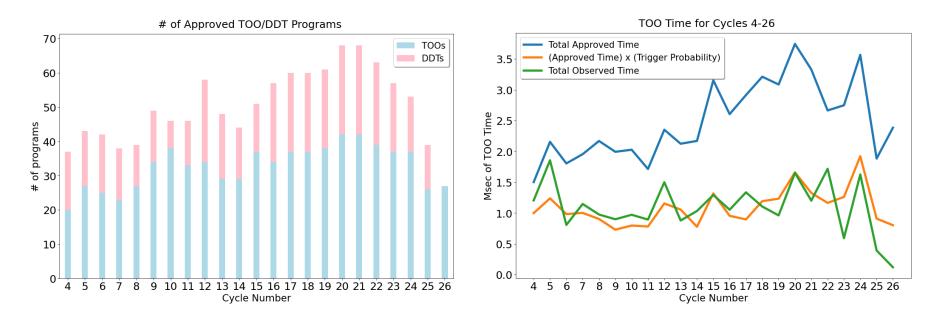
- The "corrected efficiency" (the fraction of available science time we spend observing, green line) has dropped somewhat in recent years. This is largely driven by shorter observation durations (which means more maneuver time), and the use of "intermediate attitudes" to help mange thermal issues.
- Nonetheless, the corrected efficiency remains high, and the wall-clock efficiency is consistent with the mission average.

Chandra User's Committee Meeting (October 2024)


S. W. Randall (Chandra Mission Planning)

Observation Scheduling

From Sep. 16, 2023 - Sep. 15, 2024:


- Scheduled: 1437 observations (21.6 Ms)
- Executed:
 - 63 TOO observations (924 ks)
 - 35 DDT observations (597 ks)
 - interrupted 4 operating loads for TOO/DDT support

Coordinated Observations

- Chandra Coordinations (Sep. 16 2023 Sep. 15 2024):
 - 90 observations for 1.47 Ms

TOO/DDT Observations: Historical Performance

Historical TOO/DDT performance has been very steady despite evolving thermal constraints.

20

- This has been done by continued development of tools and procedures, and this process continues for both regular planning and TOOs.
- We anticipate continued support at levels similar to historical levels

Summary

- The overall temperature increase of Chandra continues to limit the amount of time we can observe at any given solar pitch angle, due to the temperature limits of the various components.
- This complicates both constructing the Long Term Schedule and detailed weekly planning, e.g., due to component temperature limits, and increases in the detection threshold of the aspect camera.
- The effects of this heating are mitigated, as much as possible, by several proactive software, procedure, and policy changes.
- Despite increasing challenges, observing metrics remain favorable, with observing efficiency, TOO/DDT response, and science constraint compliance that are on par with mission history.
- There are no known barriers to the continued successful and efficient operation of Chandra for years to come.

Backup Slides

Star Field Constrained Targets

- Increased aspect camera temperatures means a higher detection limit for guide stars
- Some star fields have become extremely difficult to do, with narrow yearly windows (roll angle ranges) when they are observable
- These "star field constrained" targets make up the majority of our most difficult programs to schedule
- The aspect camera flight software was patched in May 2023 to use new dynamic background algorithm, improving sensitivity for guide stars. The effect is equivalent to 1-1.5 degree cooling, a significant benefit for planning
- However, the problem will worsen over time, with some star fields expected to become unobservable in the near future

Star Field Checker Tool

- Star field checker webtool was released for AO 25
- Fewer proposals with difficult star fields were submitted
- Processing time and memory usage per target is non-negligible, raising issues if large numbers of targets submitted at once (e.g., if incorporated in CPS and many proposers use it just before deadline)
- Queueing system, target list input, and inclusion in CPS all in development for next year

TFTE Heater Set-point Change

- It was realized that lowering the set-point temperature for the Telescope Forward Thermal Enclosure (TFTE) heater provided unexpected thermal relief for the ACA.
- New set-point temperature was quickly implemented
- This likely "recovered" 1-2 years worth or nominal ACA heating

ACIS Heater Set-point Investigation

- ACIS investigated the potential benefits of lowering the set-point at which the ACIS heater turns on. If the ACIS focal plane is allowed to reach a lower temperature, then the maximum dwell time after reaching this lower limit may be improved.
- After a detailed investigation, it was determined that exploratory observations would be required to answer this question definitively
- Unfortunately, this study found that lowering the ACIS set-point temperature did not significantly improve subsequent max-dwell capabilities

• History of recent thermal limit changes

Model	Date of most recent update	Planning limit relaxations in past year
ACA	2022 Feb	- 5.8 C -> -5.2 C
MUPS	2020 Apr	210 F Limit Unchanged
OBA	2022 Jan	Non-LETG Limit unchanged 103 F Separate LETG limit 102 F
Tank	2021 Oct	115F -> 120 F
PLINE	2020 May	50 F Limit Unchanged
DEA	2022 May	37.5C -> 38.5 C
ACIS FP	2022 Nov	ACIS-I: -112C -> -109 C* ACIS-S: -111C -> -109 C* *when calibration allows

Sample of Significant Planning Efforts

Completed in Cycle 23:

- Sgr A* 100 ks, including
 - Tightly coordinated with the EHT
- Galactic Center mosaic 1.7 Msec; CMZ Molecular Cloud 900 ks
- 2.6 Msec all in the same part of the sky (same "good" and "bad" pitch windows)

• Abell 2029 - 150 ks

- Extremely difficult star field
- No workable "first order" solution, at any temperature. Required special consultation with the ACA team.
- Ultimately led to very tight observing windows with extra ACA cooling.
- QSO J0041-4936 150ks; PSZ2G358.98-67.26 4.9 ks; 2MASX J15114125+0518089 60 ks - All severely star field constrained, difficult to schedule, with short allowable windows

28

• B1152+199 - 50 ks

- 5 x 10 ks, monitor series with a monthly cadence that also has a difficult star field.

Sample of Significant Planning Efforts

Coming Up in Cycle 24:

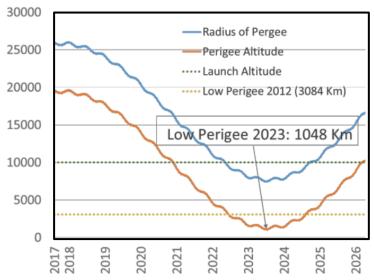
- Sgr A* 100 ks
- Tightly coordinated with the EHT
- •Abell 2029 275 ks; SIG A2029 170ks:
- Extremely difficult star field
- QSO J0041-4936 500ks; MCXCJ0216.3-4816 25ks; SDSS J114907.15+004104.3 3.1ks - All severely star field constrained, difficult to schedule, with short allowable windows
- Some likely challenging approved Cycle 24 TOO programs

Note that the story regarding the toughest programs to schedule has largely become about "star field constrained" targets

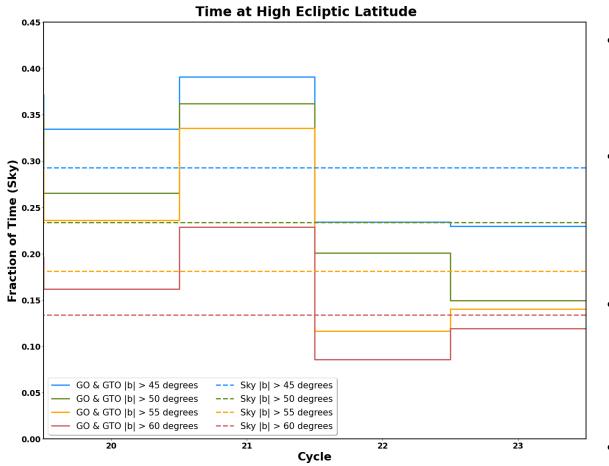
TOO/DDT Responses and Planning

- Very Fast TOO response times could be delayed by up to10 hours beyond historical times in order to pre-cool.
- Anti-TOOs are TOOs
 - Pulling a TOO or its follow-up after scheduling requires a similar effort as starting a new TOO.

- Approach to TOO follow-ups has been changed effective cycle 22
 - Now, follow-ups schedulable at time of trigger count as ½ trigger against the cycle quota; follow-ups that depend on results of an earlier TOO are proposed as separate TOOs
- TOO/DDT programs delay GO observations.
 - Harsh reality is that bumped targets can no longer routinely be rescheduled into a nearby week.

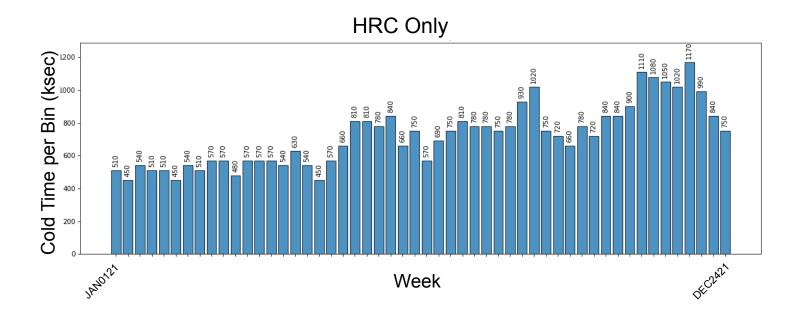

TOO/DDT Observations: Planning Impacts

Snapshot of Planning Process

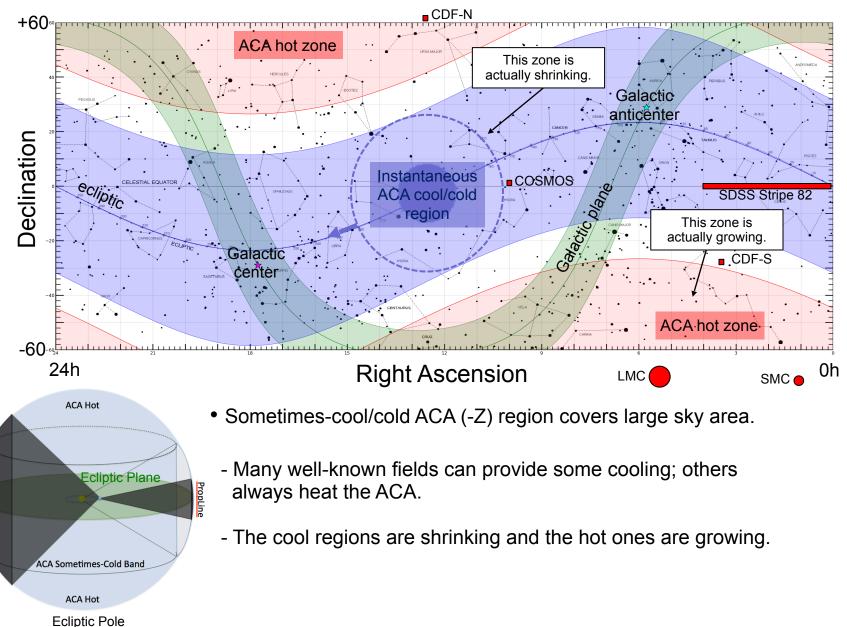

Week	Monday	Tuesday	Wednesday	Thursday	Friday	Weekend							
Schedule Planning	SOTMP Rev	iews LTS Bin	Preliminary Schedule Build										
	On-call for previous week's loads, performing all FOTMP Reviews												
Preliminary Schedule	Finalize Prelim	inary Schedule	Internal FOTMP Prelim Review Rebuild Prelim*	ACA Pre-review of Prelim Rebuild Prelim*	Deliver Prelim to SOTMP SOTMP Review								
Schedule Review	SOTMP Delivers Final ORL FOT Builds Final Schedule	FOTMP Builds Official Loads FOTMP Review	Loads Released for Review Load Review	Subsequent Load Reviews, if r									
Schedule Running	LOADS ONBOARD AND RUNNING (Planner who built loads is on-call, performing all FOTMP reviews, and already starting the next schedule's first week)												

Momentum Management

- Chandra will reach its lowest perigee altitude in 2023, requiring an increase in the use of the thrusters to unload momentum.
- Degradation of the A-side thrusters was observed after ~700 "warm starts", resulting in a switch to the B-side thrusters in 2013.
- Goal is to budget warm starts to stay under this limit of 700 through lowperigee.
- Developed software to estimate the momentum accumulation per axis for any observation, allowing the "momentum balance" to be calculated for every week.
- Momentum is now balanced week by week when laying out the LTS, as is done for thermal.


Target Distribution: Cycle 22

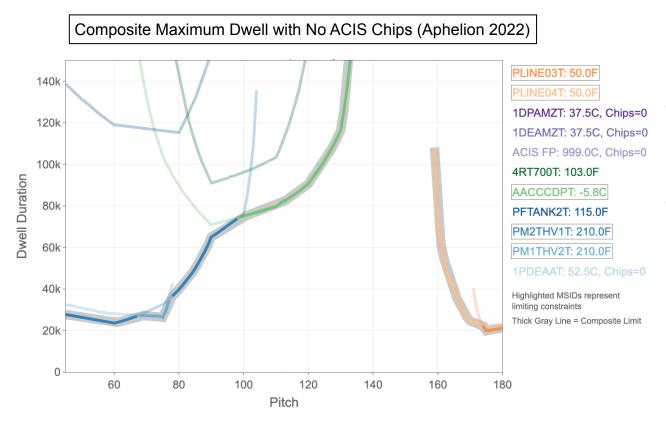
 Due to "catching up" with time from earlier cycles and the decreased relative importance of ACA heating, we *may* be able to increase the time limit on high latitude targets, <u>but low-latitude time is still crucial for cooling</u>.


- For several cycles, the CXC has been limiting high ecliptic latitude time in large programs only.
- This has not proven adequate: target times at high β have ended up *above* their proportionate share of sky area.
- Consequences include very long (~6 month) LTS development times and programs that extend far into subsequent cycles.
- Cycle 22+, with high-latitude time limited for *all* targets, finally achieves high-latitude target times somewhat below their proportionate sky area.

Chandra Cool Targets (CCTs)

- Recall that cold HRC observations are particularly useful for thermal management, since ACIS is the main limiting factor at high pitch angles.
- There is a good amount of HRC cold time per week remaining in the CCT program.
- However, **all** of these remaining observations are 30 ks, which is typically longer than desired for nominal planning, since it can unnecessarily displace time from GO programs or unbalance the ACIS heating budget for the week.

Constraints: Sky View



Chandra User's Committee Meeting (October 2024)

Sun Avoidance

35

Future Thermal Needs

- Most limiting components cool at high pitch angles, except ACIS.
- Therefore, turning off all ACIS chips greatly increases the maximum dwell at high pitch angles (limited at the highest pitch angles by the propulsion lines)

- This means that HRC observations are especially useful for cooling most thermal components (and useful at other pitch angles for cooling ACIS).
- We expect HRC observations to become more and more useful as the global average temperature of the spacecraft continues to rise.