Physical Properties of the Highest-redshift SMBHs

and how *Lynx* will detect their missing lower-mass counterparts and seeds

Benny Trakhtenbrot (ETH Zurich)

with: Hagai Netzer (Tel-Aviv U.), Paulina Lira (U. Chile), Claudia Cicone (INAF Brera), Roberto Maiolino (Cambridge), Ohad Shemmer (U. North Texas), Marta Volonteri (AIP), Priyamvada Natarajan (Yale) <u>and the "First Accretion Light" SWG</u>

from Chandra to Lynx meeting, Cambridge, 10-Aug-2017

SMBHs at all cosmic epochs

Wide-field optical/IR surveys (SDSS, DES, UKIDSS, Pan-STARRS...) found 100s of quasars at $z \ge 5$, when the universe was less than 1 Gyr old

The highest-z quasars: normal unobscured AGNs?

How to grow a SMBH in ~1 Gyr? 1 Gyr after BB 3 Gyr 2 Gyr 10^{11} black hole mass, $M_{\rm BH}$ [M_{\odot}] $_{01}^{10}$ $_{01}^{10}$ $_{01}^{10}$ $_{01}^{10}$ $_{01}^{10}$ $_{01}^{10}$ $_{01}^{10}$ $_{01}^{10}$ BH seed formation M87 ွ၀ ^{ရွိွ}တို့မို MW Direct Collapse z<2 SDSS (Trakhtenbrot & Netzer 2012) Stellar z~2-3.5 (Shemmer+2004, Netzer+2007) $\nabla \Delta$ z~3.5 (Trakhtenbrot+2016) Mergers \diamond z~4.8 (Trakhtenbrot+2011) z~6.2 (Kurk+2007, Willott+2010) Pop-III 0 10^{2} 0.5 15 2 5 10 20 redshift, z

plot adapted from Trakhtenbrot & Netzer 12 reviews on BH seeds: Volonter 10, Natarajan 11

How to grow a SMBH in ~1 Gyr? 3 Gyr 1 Gyr after BB 2 Gyr 10^{11} black hole mass, $M_{\rm BH}$ [M_{\odot}] $_{01}^{10}$ $_{01}^{10}$ $_{01}^{10}$ $_{01}^{10}$ $_{01}^{10}$ $_{01}^{10}$ $_{01}^{10}$ Rapid growth BH seed formation M87 ඉං $L/L_{ m Edd} imes f_{ m active}$ 00 0.10.5MW $\tau_{\bullet} \simeq 0.4 \; \mathrm{Gyr}$ $\frac{1}{(1-\eta)} \frac{1}{L/L_{\rm Edd} \times f_{\rm active}}$ Direct Collapse z<2 SDSS (Trakhtenbrot & Netzer 2012) Stellar z~2-3.5 (Shemmer+2004, Netzer+2007) $\nabla \Delta$ z~3.5 (Trakhtenbrot+2016) Mergers z~4.8 (Trakhtenbrot+2011) z~6.2 (Kurk+2007, Willott+2010) Pop-III 10^{2} 0.5 2 5 10 15 20 redshift, z

plot adapted from Trakhtenbrot & Netzer 12 reviews on BH seeds: Volonter 10, Natarajan 11

Large-scale environments of early SMBHs

- Simulations suggest early BH mass growth favors over-dense environments
- Can be tested by counting the number of galaxies around SMBH hosts
- So far, few systems studied, with ambiguous results (Willott+05, Overzier+06, Kim+09, Utsumi+10, Husband+13, Banados+13, Simpson+14, Kikuta+17...)

The epoch of fastest growth of the most massive BHs

fast-growing SMBHs, with $M_{\rm BH} \sim 10^9 M_{\odot}$ and $L/L_{\rm Edd} \sim 1$

How to grow a SMBH in ~1 Gyr?

plot adapted from Trakhtenbrot & Netzer 12 reviews on BH seeds: Volonter 10, Natarajan 11

Accretion flows powering z~5-7 quasars

Applying (over?) simplified thin accretion disk models to derive M_{disk} and η

The highest-redshift quasars are consistent with Eddington-limited, radiatively efficient, thin-disk accretion

Hosts of fast-growing SMBHs at $z\sim5$, with ALMA

Six fast-growing z~4.8 SMBHs observed w/ALMA (cycle-2, band-7, ~0.3")

• ALMA resolves the dusty, star-forming host galaxies of early SMBHs

Trakhtenbrot+17 (*ApJ*, 836, 8)

Hosts of fast-growing SMBHs at $z\sim5$, with ALMA

Six fast-growing z~4.8 SMBHs observed w/ALMA (cycle-2, band-7, ~0.3")

Hosts of fast-growing SMBHs at $z\sim5$, with ALMA

The emerging $M_{\rm BH}$ - $M_{\rm host}$ relation at $z\sim$ 5-7

High-z, fast-growing SMBHs are slightly "over-massive" w.r.t. hosts

Environments of fast-growing SMBHs at $z\sim5$, with ALMA

Environments of fast-growing SMBHs at $z\sim5$, with ALMA

- A high fraction of companion (interacting) SMGs: ~50%
- Separations of ~15-50 kpc and < 500 km/s from quasar hosts
- All are "major mergers"; not seen in previous Spitzer/IRAC data

The highest-redshift quasars are found in over-dense environments

Environments of fast-growing SMBHs at $z\sim6$, with ALMA

The highest-redshift quasars are found in over-dense environments

<u>Dual</u> fast-growing SMBHs at z~5, in sub-mm and <u>X-ray</u>?

Environments of fast-growing SMBHs at $z\sim6$, in sub-mm

(some of) The highest-redshift quasars drive large-scale gas outflows

More *z*>5 quasars are coming...

adapted from Niel Brand's talk and Aird et al (2013; Athena science case)

Summary: *z*~5-7 quasars

Property	Known z~5-7 quasars	
Obscuration/ selection	un-obscured / UV-opt. $L_{\rm bol} \sim 10^{47} {\rm erg/s}$	
SMBH mass	$M_{\rm BH} \sim 10^9 M_\odot$	
Accretion rates	$L/L_{\rm Edd}$ ~1	
Accretion mode	thin disk, $\eta \ge 0.1$	
Duty cycle	~100% (continuous growth)	
Implied BH seeds	Massive, $M_{\text{seed}} \sim 10^{4-6} M_{\odot}$	
Host mass	$M_{ m host} \sim 10^{10-11} M_{\odot}$	
Host star formation	SFR ~300-3000 M_{\odot} / yr	
Large scale env.	over-dense (+outflows?)	
Demographics	Rare! $\Phi < 10^{-8} \text{ Mpc}^{-3}$	
Future prospects	wFIRST, Euclid, Athena	

are we missing anything?

"Missing AGNs" at high-z: deep Chandra surveys

Chandra COSMOS Legacy Survey: >1.5 deg², 160 ks (Civano+16, Marchesi+16a,b)

The space density of lower-LAGN drops beyond $z\sim3$

"Missing AGNs" at high-z: deep Chandra surveys

Chandra Deep Field South (0.13 deg², 7 Ms) and North (2Ms)

(Luo+16, Vito+16,<u>17</u>...)

The space density of lower-LAGN drops beyond $z\sim3$

But *should* we expect faint AGNs at $z \sim 5-7$?

Fig. from Trakhtenbrot+16

are the missing AGNs obscured? low BH occupation fraction? low duty cycle? ("flickering")

But *should* we expect faint AGNs at $z \sim 5-7$?

are the missing AGNs obscured? low BH occupation fraction? low duty cycle? ("flickering")

Summary: *z*~5-7 quasars

Property	Known z~5-7 quasars
Obscuration/ selection	un-obscured / UV-opt. $L_{\rm bol} \sim 10^{47} {\rm erg/s}$
SMBH mass	$M_{\rm BH} \sim 10^9M_{\odot}$
Accretion rates	$L/L_{\rm Edd} \sim 1$
Accretion mode	thin disk, $\eta \ge 0.1$
Duty cycle	~100% (continuous growth)
Implied BH seeds	Massive, $M_{\text{seed}} \sim 10^{4-6} M_{\odot}$
Host mass	$M_{ m host} \sim 10^{10-11} M_{\odot}$
Host star formation	SFR ~ 300-3000 M_{\odot} / yr
Large scale env.	over-dense (+outflows?)
Demographics	Rare! $\Phi < 10^{-8} \text{ Mpc}^{-3}$
Future prospects	wFIRST, Euclid, Athena

are we missing anything?

Summary: z~5-7 quasars

Property	Known z~5-7 quasars	"Typical" AGN / galaxies (?)
Obscuration/ selection	un-obscured / UV-opt. $L_{\rm bol} \sim 10^{47} {\rm ~erg/s}$	~50% are obscured $L_{\rm bol} < 10^{44} {\rm erg/s}$
SMBH mass	$M_{\rm BH} \sim 10^9 M_\odot$	$M_{\rm BH} \sim 10^7 M_\odot$
Accretion rates	$L/L_{\rm Edd} \sim 1$	$L/L_{\rm Edd} \sim 0.01 - 1$
Accretion mode	thin disk, $\eta \ge 0.1$	(who knows, really?)
Duty cycle	~100% (continuous growth)	<< 100%
Implied BH seeds	Massive, $M_{\text{seed}} \sim 10^{4-6} M_{\odot}$	Pop-III, $M_{\rm seed} < 10^3 M_{\odot}$
Host mass	$M_{\rm host} \sim 10^{10\text{-}11} M_{\odot}$	$M_{\rm host} \sim 10^{9-10} M_{\odot}$
Host star formation	SFR ~ 300-3000 M_{\odot} / yr	SFR < 100 M_{\odot} / yr
Large scale env.	over-dense (+outflows?)	"normal"
Demographics	Rare! $\Phi < 10^{-8} \text{ Mpc}^{-3}$	Common? $\Phi \sim 10^{-6}$ Mpc ⁻³ (~10% of galaxies? less?)
Future prospects	wFIRST, Euclid, Athena	Lynx!

"Missing AGNs" at high-z: deep Chandra surveys

Chandra Deep Field South (0.13 deg², 7 Ms) and North (2Ms) (Luo+16, <u>Vito+16</u>, 17...)

453 galaxies 2.65 Giga-sec 230 galaxies <u>1.35 Giga-sec</u>

Chandra sees no sign of AGN in (stacks of) typical z>5 galaxies

A proposed Lynx deep survey: 4 Ms over 1 deg²

(several different fields, ~8 pointings)

Lynx will detect the faint/low-M counterparts of the highest-redshift quasars, and will trace progenitors back to the BH seed population

Lynx will detect the faint/low-M counterparts of the highest-redshift quasars, and will trace progenitors back to the BH seed population

Lynx will detect the faint/low-M counterparts of the highest-redshift quasars, and will trace progenitors back to the BH seed population

plot adapted from Trakhtenbrot & Netzer 12 reviews on BH seeds: Volonter 10, Natarajan 11

<u>Summary</u>

- Wide-field optical/IR surveys have identified 100s of quasars at z > 5These SMBHs had to grow continuously and/or from massive seeds
- We learned that the highest-redshift quasars are growing <u>fast</u> in massive, gas-rich, high-SFR hosts, located in <u>rare</u> over-dense regions. Are these SMBHs the rare "lucky ones"?
- The deepest Chandra surveys suggest we're missing the fainter / lowermass counterparts of these quasars - the progenitors of z~3-4 systems.
 Why can't we see AGN signature in "typical" high-z galaxies?
- Lynx will detect extremely faint/low-mass AGN out to z~10, tracing the high-z AGN population back to the epoch of massive BH seed formation.