Missing Baryons Around Galaxies And Through The Universe

Joel Bregman University of Michigan

Collaborators: Mike Anderson, Xinyu Dai, Matt Miller, Edmund Hodges-Kluck, Xinyu Dai, Zhijie Qu, Yunyang Li

- Astrophysical reasons for caring about Missing Hot Baryons
- What have we already learned about Missing Hot Baryons in galaxies and the Universe?
- New insights before Lynx launches
- The Lynx contributions

The Astrophysics

- Formation of the Cosmic Web
 - For overdensities ~ 30 180
 - Collapse of filaments
 - T ~ 1-10x10₅ K
- Virialized objects
 - Collapse for overdensities > 180
 - Filaments drain into virialized regions

- − T > 10⁵ K
- Baryons would follow dark matter if not for cooling (T, n, Z) and feedback

Importance of Radiative Cooling

- Importance of hot halo
 - Reservoir of gas to cool onto disk and make stars
 - "Pressure release valve" for feedback
- Feedback critical to modifying hot halo
 - SNe and AGNs provides feedback
 - amount of feedback and timing matters
 - Outflow from galaxy (but to what radius?)
 - Circulation pattern within R₂₀₀
 - but at what rate?
- Measure hot halo properties to infer heating and galaxy evolution

Could Gas Be Hot Beyond R₂₀₀?

- Accretion shocks splashback radius
 - Gas hot to $1.2-1.5R_{200}$
 - Hot filaments draining in
- Early heating of gas
 - SN occur before deep potential well formed
 - Most heated gas never falls in
 - Major modification of galaxy formation/evolution
- Winds

– Can push out gas; reheating at terminal shock

• Great uncertainties here

- Answers to astrophysical issues
 - require measuring n, T, metallicity, entropy out to ~R₂₀₀ and beyond
- This can all be done with X-ray observations
- Observations we need
 - Unbiased absorption line survey of hot gas along random sight lines
 - Cosmic web, galaxies, and galaxy groups
 - Studies of hot gas around individual galaxies and groups

- Astrophysical reasons for caring about Missing Hot Baryons
- What have we already learned about Missing Hot Baryons in galaxies and the Universe?
- New insights before Lynx launches
- The Lynx contributions

What Do We Know Today?

- Count up the baryons in the Universe
 - <10% in stars and cold gas in galaxies
- Census Along Sightlines
 - Add in mass from UV absorption line studies (through O VI)
 - About half of the baryons still missing
 - No O VII, O VIII detections along sightlines
 - Current instruments too insensitive
- Virialized systems are about 60% of the Dark Matter
 - Are the baryons missing from virialized and non-virialized systems?
- The Missing Metals Problem is Worse!
 - Shull et al. (2014): takes cosmic SFR and calculates metals produced
 - Missing 90% of metals
 - Similar results by Maoz et al. (2014) from SNe
 - Mean cosmic metallicity of universe $\approx 0.09-0.16$
 - Remainder of baryons (T > 3E5 K) should have Z \approx 0.2-0.3 Z_{sun}
- The hot medium has plenty of metals (not "pristine") good for observers!

Hot Halos in Virialized Systems

- Rich clusters have nearly all their baryons.
- Galaxies: count up stars + disk gas
- Galaxies missing 70-95% of baryons
- Galaxies become increasingly baryon-poor for lower mass.
- L* galaxy missing ~10^{11.3} M_{sun} of baryons!
 - 4x more mass than the stars
 - 20x more than the cold disk gas

Dai et al. 2010; McGaugh et al. 2010

Halos Around Two Massive Galaxies: NGC 1961 and UGC 12591

UGC 12591: Early-type spiral (left) NGC 1961: Later-type spiral (right)

Stellar Mass is 6-8x the Milky Way

- Detections out to 50-70 kpc
 - 0.15-0.2 R_{virial}
- Density consistent with beta $\approx \frac{1}{2}$
 - n ~ r^{-3/2}
 - No flattening with r (possible steepening)
- Gas Masses 0.5-1 x M* to R_{virial}
 - Extrapolation at contant beta
 - A big reservoir of gas
 - Not the missing baryons (>50% missing)
- $T \approx 1.4 T_{virial}$
 - Suggests some heating
- Metalicity
 - 0.1-0.3 Solar in spirals
 - 0.3-1 Solar in early-type galaxies

Summary of 3 isolated early-type galaxies and 3 massive spirals.

Bregman, Anderson, Miller... (2017); Bogdan; O'Sullivan

From $0.2R_{200}$ to R_{200}

- Hot gas mass within 50 kpc is ~5E9 Msun
- Extrapolate to R₂₀₀
 - Have to adopt a density distribution
 - Density has same slope within 50 kpc and > 50 kpc
 - Probably wrong but simple
 - Simulations: density steepens with R
 - If isothermal to R₂₀₀, density flattens (Faerman et al. 2017)
- Constant density slope
 - $M_{gas}(R_{200}) \sim M_{star}$

 $- M_{gas} + M_{star}$ at R₂₀₀ still only 50% of baryons (at best)

• Need to measure density law directly from X-ray observations

Are the Missing Baryons Warm (~104 K)?

- Detections in UV: COS-Halos
 - Line strengths + Cloudy [] column densities
 - Interpreted by team as most of the missing baryons in the halo
 - Conversion to columns have issues
 - Reinterpreted by two groups to get 5x lower masses
 - Now less mass than stellar mass
 - Likely seeing large stable disks to 50 kpc (also seen in 21 cm HI and in models) + a halo with less gas mass (JNB 2017)
- Lower redshift absorption studies get lower gas masses
- Bottom Line
 - Significant gas in disks but few times less than M_{star}
 - Modest mass in halo, but less than disk
 - N(OVI) about 1/10 of N(OVII)
 - Warm gas does not dominate halo gas distribution

Are the Missing Baryons Hot?

- Hot gas can create a Sunyaev-Zeldovich signal
 - Y parameter is just product of $M_{\mbox{\tiny gas}}$ and $T_{\mbox{\tiny X}}$
 - $T_x \approx T_{virial}$, so we just measure M_{gas}
 - Can't detect systems with M_h < 3E14 M_{sun}
 - Stack galaxies in M_{star} bins (Planck 2013)
 - Only detect massive galaxies (logM_{star} >11.1)
 - Implies most of the baryons in massive galaxies are hot
 - Gas appears extended in stack and in cross-company (Cross-2004 5.) (2005) (20

Does the SZ Signal Make Sense?

- Individual galaxies should be point sources
 The Planck beam is 10', but 2R₂₀₀ = 4'
- Individual galaxies observed in X-rays have much smaller Y parameter (extrapolated to R₂₀₀)

Resolution?

 Our galaxies are outliers relative to stack sample.
 Stack sample galaxies – usually in groups/clusters.
 Was the correction for group contamination too small?

Maybe the gas out to R_{200} and beyond is hot.

Milky Way Hot Gas in X-rays (emission and absorption)

Emission from O VII (0.56 keV) and O VIII (0.65 keV) from Milky Way; 650 sightlines

Fit parametric beta model to get $n_e vs r$; T_x from spectra Mostly, sensitive to gas < 50 kpc from Sun (Miller 2015; Hodges-Kluck 2016; Li 2017)

The Metallicity of the Halo Gas

- *Minimum* metallicity given by the combination of the pulsar dispersion measure and O VII, O VIII absorption columns
 - Electron column to LMC fixed by pulsar DM
 - N(OVII), N(OVIII) dominated by material between LMC
 and MW measure the EW toward the LMC
 - Divide one by other: $Z > 0.3 Z_{sun}$
 - About the same as the external galaxies

Extrapolate to 250 kpc Masses considerable but a bit less than M_{star} (5x10¹⁰ M_{sun}) Still missing at least half the baryons

Fitting More Baryons Into R₂₀₀

- Make density law flatter beyond 50 kpc
 - Density power law pretty well constrained within 50 kpc
- If all missing baryons are within R_{200} , beta < 0.3 (flat density law)
- If beta \approx 0.5, baryons must extend beyond R₂₀₀
- Measuring density law beyond 50 kpc is crucial

Where Do The Missing Baryons Lie?

- Extrapolate $n_{gas} \sim r^{-3/2}$ law to large radius (beta $\approx \frac{1}{2}$)
- Missing baryons within 1.7-3R₂₀₀
- Too many extrapolations need new data!

- Astrophysical reasons for caring about Missing Hot Baryons
- What have we already learned about Missing Hot Baryons in galaxies and the Universe?
- New insights before Lynx launches
- The Lynx contributions

What Will We Learn Before Lynx?

- UV Absorption Line Studies (HST)
 - The big studies are done; modest progress at best
- JWST, Euclid, WFIRST, Giant ground-based telescopes

 Not much progress here either
- Improvements in SZ studies
 - Higher angular resolution (but may be resolved already)
 - Subtraction of Galactic dust signal primary systematic
 - Anticipated improvement in M_{halo} : 3-6x
 - Still will need stacks ~10³; <u>no individual galaxies</u>

Before Lynx, cont.

Athena

– Cosmological census: absorption to 5 mA in O VII

- Likely absorption from inner parts of galaxies (<100 kpc)
- Won't detect outer parts of galaxies or WHIM

If Arcus MIDEX selected (high resolution X-ray spectroscopy), should go down to 3 mA (or better).

Lynx will go to 1 mA, or better.

- Athena for individual galaxies in emission
 - Much better define gas properties within 50 kpc
 - T_x, density, metallicity to good accuracy
 - Some emission line information out to 100 kpc
 - Long observations with small XIFU
 - Observations out to a good fraction of R₂₀₀ would take 10+ Msec per object

- Astrophysical reasons for caring about Missing Hot Baryons
- What have we already learned about Missing Hot Baryons in galaxies and the Universe?
- New insights before Lynx launches
- The Lynx contributions

- Lynx improvements for Halo Emission
 - The 20' IFU is 16x larger fov than Athena
 - Imaging of individual galaxies to D ~ 100 Mpc will go out to ~R_{200;} 1 Msec observations
 - Probably about $0.5R_{200}$ if you want to know n, Z, T_x
 - Out to R_{200} (and possibly beyond) if you just want to detect hot gas emission (and get T_x)
 - Detect X-ray halos to z ~1 by stacking!
 - Cosmological evolution

Lynx will be able to detect hot halos against bright AGNs (example field)

Put the MW Halo Around External Galaxies

- Extrapolated beyond virial radius (JNB 2015)
- Can detect gas beyond R₂₀₀
- Studies -- +- 1 E cosmological evolution

Lynx: Milky Way Hot Halo

- Dynamics of the halo (currently poorly known; 180 +/- 40 km/s)
 - Line shapes from Lynx
 - rotation vs radius
 - infall/outflow rate (~30 km/s)
 - Turbulence (feedback); ~50-100 km/s
- Optical depth effects in the strongest lines (partly Athena)
 - Affects gas mass determination and metallicity
 - Measure second strongest line from each ion; split triplets
- Metallicity and Temperature vs radius
 - Parts of lines maps to radius
 - Possible with high S/N abs lines + known emissivities

You can see the Galaxy rotate!

Stationary Hot Halo

Co-Rotating Hot Halo Miller et al. (2015)

200 –150 –100 –50 0 50 100 150 200 Line Centroid (km s⁻¹)

Map the Galaxy Rotation Vs Radius

- X-Ray Rotation Curve
 - Higher spectral resolution(*R*) essential
 - Doppler b = 45 km/s
 - Shown I = 90, b = 0
- Line location maps to radius
 - Line ratios give T(r)
- Need R ~ 5000 or greater
 - And high S/N
 - Athena inadequate, R = 300
 - R ~ 10,000 would be even better

Summary: Advances with Lynx

- Census of hot absorbing gas in Universe
 - Galaxy halos (and beyond), galaxy groups, Cosmic
 Web
 - As a function of redshift to z ~ 1.5
- Galaxy halos in emission and absorption
 - $M_{gas} T_{\chi}$ and metals distribution to large radii
 - Galaxy evolution, z = 0 1
- Dynamics of hot galactic halos and groups

– Rotation, turbulence, accretion rate