High Resolution Imaging and Gratings in Concert

An abundance of cutting edge science that can only be done with Lynx

Lia Corrales University of Wisconsin - Madison Einstein Fellow

In collaboration with

Sebastian Heinz, University of Wisconsin - Madison Fred Baganof, MIT Kavli Institute

From Chandra to Lynx, August 2017

High resolution imaging and soft X-ray spectroscopy, together

State of the field: Why high resolution imaging matters

XMM view of the Galactic Center

Ponti et al. (2015)

Chandra view of the Galactic Center

Small angle scattering by dust produces time-dependent image

Use X-ray transients in the Galactic Center to map foreground dust structure affecting X-ray images so we can apply this knowledge to Sgr A*

90

background

J174540.7-290015 profiles

PSF constructed with a low-NH source as template (QSO B1028+511)

Corrales+ 2017

Corrales+ 2017

Sgr A* light curve from Chandra GC XVP

Neilsen+ 2013

State of the field: Why high resolution imaging matters

The future of X-ray astronomy: Assumptions

- 1. Lynx imaging resolution will at least be the same as Chandra
- 2. We will have X-ray IFUs (micro-calorimeters) in space

1. Lynx imaging resolution will at least as good as Chandra

Chandra Deep Field South (NASA)

3C 273 as seen by Chandra

1. Lynx imaging resolution will at least as good as Chandra

Cyg X-3's Little Friend

Cir X-1 dust scattering echoes

McCollough et al. (2013) McCollough, Corrales, & Dunham (2016)

Heinz et al. (2015)

2. We will have X-ray IFUs (micro-calorimeters) in space

twitter: @kittenblue0706

XARM (based on Astro-H)

Resolution ~ 1.7 arcmin HPD Effective Area ~ 200 sq cm

Athena

Resolution ~ 5-10" HEW Effective Area ~ 200 sq cm

ATHENA THE ASTROPHYSICS OF THE HOT AND ENERGETIC UNIVERSE

Europe's next generation X-RAY OBSERVATORY

How does ordinary matter ASSEMBLE INTO THE LARGE SCALE STRUCTURES THAT WE SEE TODAY?

> HOW DO BLACK HOLES GROW AND SHAPE THE UNIVERSE?

State of the field: Why high resolution imaging matters

The future of X-ray astronomy: Assumptions

- 1. Lynx imaging resolution will at least be the same as Chandra
- 2. We will have X-ray IFUs (micro-calorimeters) in space

ISM and dust studies with an X-ray IFU

Spectrum of dust scattered light should have features coincident with **absorption edge structure** from **constituent elements**

Simulated micro-calorimeter spectrum

Ratio of halo to source reveals dust spectral features

State of the field: Why high resolution imaging matters

The future of X-ray astronomy: Assumptions

- 1. Lynx imaging resolution will at least as good as Chandra
- 2. We will have X-ray IFUs (micro-calorimeters) in space

The future of X-ray astronomy: Limitations

1. Limits on observing bright sources

Instrument tolerance Non-linear detector behavior Telemetry saturation

1. Limits on observing bright sources

Instrument tolerance Non-linear detector behavior Telemetry saturation

Use tricks! — Readout streak [calibration needed] — De-focus [problematic]

Faster readout time

Gratings increase tolerance

Dispersing light prevents non-linear effects (in most cases)

1. Limits on observing bright sources

Athena may not be capable of observing brightest X-ray binaries

Will Lynx be different?

High resolution imaging helps resolve out background point sources (CXB)

Orbit choice — intensity and stability

Background from gratings instruments is inherently lower

MIT HETG group

~3 Ms HETG (ACIS-S)

~1 Ms ACIS-I

~3 Ms HETG (ACIS-S)

~1 Ms ACIS-I

You can't ignore background

Deeper stellar and AGN surveys Study structure of diffuse hot gas in more detail Dust scattering halos and echoes

Heinz, Corrales, et al. (2016)

Prospects for dust echoes

Dust echo brightness is directly proportional to **fluence** (time integrated flux)

Distribution of X-ray flares from all MAXI light curves

Brianna Mills (REU student), Heinz, & Corrales (in prep)

Echo discovery space compared to Chandra

Brianna Mills (REU student), Heinz, & Corrales (in prep)

A lot of dust science can be done without an X-IFU

ISM extinction: High resolution imaging and gratings in concert

Absorption edge fine structure is dependent on **imaging resolution**, grain size, & dust location

MRN dust

0.3 micron grains

Corrales et al. (2016)

LMXB GX 9+9 (96 ks)

Corrales et al. (2016)

State of the field: Why high resolution imaging matters

The future of X-ray astronomy: Assumptions

Lynx imaging resolution will at least as good as *Chandra* We will have X-ray IFUs (micro-calorimeters) in space

The future of X-ray astronomy: Limitations

- 1. Limits on observing bright sources
- 2. Limits from background
- 3. Soft X-ray Sensitivity

Gratings are more ideal for soft X-ray spectroscopy

Gratings are more ideal for spectroscopy of neutral metals

10-50 Å

ISM science from soft X-ray spectroscopy

Neutral and near-neutral phases of the two **most abundant** metals

Astromineralogy, study PAHs

Study absorption line systems at moderate redshift

High resolution imaging:

Crowded star fields Galactic Center science Dust scattering edge structure

Reducing background:

Deeper surveys (point sources and diffuse) Dust scattering echoes Increasing spectroscopic S/N

Ability to study bright sources:

Accretion disk and stellar physics from bright X-ray binaries Study multi-phase ISM in extinction

Soft X-ray sensitivity:

Study the most abundant metals in the Universe Astromineralogy and multi-phase ISM Access to higher redshift Universe

High resolution imaging: Crowded star fields Galactic Center science Dust scattering edge structure

Reducing background:

Deeper surveys (point sources and diffuse) Dust scattering echoes Increasing spectroscopic S/N

Ability to study bright sources:

Accretion disk and stellar physics from bright X-ray binaries Study multi-phase ISM in extinction

Soft X-ray sensitivity:

Study the most abundant metals in the Universe Astromineralogy and multi-phase ISM Access to higher redshift Universe High resolution imaging: Crowded star fields Galactic Center science Dust scattering edge structure

Reducing background:

Deeper surveys (point sources and diffuse)

Dust scattering echoes

Increasing spectroscopic S/N

Ability to study bright sources:

Accretion disk and stellar physics from *bright X-ray binaries* Study multi-phase ISM in extinction

Soft X-ray sensitivity

Study the most abundant metals in the Universe Astromineralogy and multi-phase ISM Access to higher redshift Universe