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Wilms, Allen & McCray 2000, ApJ, 542, 914
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F1G. 1.—Absorptivity per hydrogen atom of the ISM using the assumptions described in the text. The dotted line is the absorptivity including grains with
an MRN distribution, and the dashed line is the absorptivity assuming that all grains are of radius a = 0.3 um. The inset shows the cross section without the
multiplication by E3. We also illustrate the contribution of hydrogen and hydrogen plus helium to the total cross section. The contribution of the H, cross
section to the total hydrogen cross section is indicated by the dot-dashed line.
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Hoffman & Draine 2015, arXiv:1509.08987v1:

Weingartner & Draine (2001)
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Fig. 2.— Cross sections per Hydrogen nucleus for the Weingartner & Draine (2001) (Ry = 3.1) dust model.

Scattering contributes significantly to the extinction, with significant variation across the O K and Fe L absorption
edges.
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Hoffman & Draine 2015, arXiv:1509.08987v1:
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Fig. 9.— Orientation-averaged Qext for equal-mass aeg = 0.2um silicate grains with different geometries. A 256 x

256 grid was used for the shadow function in all cases, and calculations were averaged over 64 random orientations.
Porous, extended grain geometries significantly alter the fine structure of the absorption edges (except for the Fe K
edge). Moderately prolate/oblate spheroidal grains, on the other hand, have Qext very similar to spherical grains.
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Typical source in Milky Way:

Flux: 10° ergscm?st (~ GX 9+9)
NH: 3x10%! cm?

Model: powerlaw + ngauss(16)
Abundance: solar

The black simulation shows an LYNX
exposure for 1 ks in the relevant band-
pass between 13 and 43 Angstrom
showing expected line absorption from

CV,CVIi

N VI, N VII
OLOILOI,OlV,0VIl, OVl
Ne |, Ne ll, Ne lll

The red simulation shows the same for a
100 ks exposure with the HETG onboard
Chandra. The HETG bandpass usually

cuts off below 30 Angstrom
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Lee et al. 2009
measure Fe Lz, shape/depths
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Schulz, Corrales & Canizares 2016 :
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Obtain a highest resolved edge structure at sufficient statistic in
the smallest possible data bin:
GX 3+1: 213ks
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Li et al., Phys. Chem. Minerals, 1995: Silicon K-edge XANES Spectra of Silicate Minerals
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Fig. 1. Si K-edge XANES spectra of some representative silicate
minerals with different degree of polymerization
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Fig. 2. Si K-edge {peak C) of representative silicate minerals of
Fig. 1 in an expanded scale. The Si K-edge shifts to higher energy
by 1.3 eV with increase in the polymerization of SiO%~ clusters,
from nesosilicates to tectosilicates
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So why Lynx?
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Lynx allows X-Ray Absorption Surveys

X-ray absorption spectroscopy is a powerful tool to
study existing forms of matter in our Universe.
LYNX allows us to perform high resolution X-ray
absorption surveys as effectively as surveys are now
or in very near future quite common in astronomy

pursued in other wavelength bands such as optical, IR,
and sub-mm.
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~5000 Galactic Sources:
Log f, = [-9, -13]
<exposure> > 1 ks

Neutral (cool) vs. lowly ionized (warm) ISM phases: CK, O K, Ne K OE<0.5eV
Dust composition and variability in the Milky Way: Fel, MgK,SiK,FeK O0E<2eV
Gas to dust ratio across the Milky Way: Mg K, Si K O0E<2.5eV

The Fe K/ L depth ratio across the Milky Way; Fel, FeK OE<2eV
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Summary

X-ray absorption spectroscopy is a powerful tool to
study existing forms of matter in our Universe.
LYNX allows us to perform high resolution X-ray
absorption surveys as effectively as surveys are now
or in very near future quite common in astronomy

pursued in other wavelength bands such as optical, IR,
and sub-mm.
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