

Beyond Chandra: accreting binary populations in the era of Lynx

University of Crete, CfA

V. Antoniou, P. Sell, J. Andrews, T. Fragos

G. Fabbiano, A. Hornschemeier, A. Ptak

X-ray binary populations

HMXBs

LMXBs

Mineo et al. 2014

Boroson et al. 2011

X-ray binary populations

Fundamental

• Dependence on age, Z

Important:

XRB formation/evolution
Modeling GW sources

XRB feedback in Cosmic Dawn

Fragos et al. 2013

The deep Chandra SMC Survey

A Chandra "X-ray Visionary Program":

11 +3 Fields in the SMC (50-60 kpc)

 2×50 ksec exposures (1.1 + 0.3 Msec total)

Key Goal

- A deep census of accreting pulsars (Lx $\sim 10^{33}$ erg/s)
- HMXB formation efficiency at different ages
 Well determined star-formation history metallicity (1/5 Z_I - 1/3 Z_I)

SMC star-formation history

Harris & Zaritsky, 2004

SMC: The deep Chandra Survey

HMXB classification

HMXB formation efficiency

HMXB formation efficiency

Grand design spiral galaxy (3.6 Mpc)

Advantages:

- Complete HST coverage
- Deep Chandra coverage
 Sell et al. 2011; Swartz et al.

Measure directly formation efficiency of different XRB classes

Optical counterparts: Donor star classification

P. Sell et al.

XLFs for different source classes (Sell et al.)

Limitations of Chandra: variable under-sampled PSF

From Chandra to Lynx

With well-sampled 0.5" PSF across the field we can: Characterize X-ray sources

From Chandra to Lynx

With 0.5" resolution and 2m² we can reach fainter populations (end-to-end

Pop. Synthesis Andrews et al.

Chandra to Lynx

With extended energy coverage we can Classify compact objects

Lynx discovery space

ULXs

Outbursting binaries

Active binaries

Why bother?

- X-ray binaries key for high-profile science
 - Gravitational wave sources

Why bother?

- X-ray binaries key for high-profile science
 - Cosmological evolution of galaxies and compact

Lehmer et al., 2016

Why bother?

- X-ray binaries key for high-profile science
 - Cosmological evolution of galaxies and compact objects
 - Models need to be calibrated.
 - Source statistics
 - Known environment
 - Source classification critica

Summary

- X-ray binaries key for high-profile science
 - Cosmological evolution of galaxies and compact objects
 - Gravitational wave sources
- · But: Chandra reaches only the tip of the iceberg
- Next major leap requires Lynx:
 - ✓ Identification of multi-\(\lambda\) counterparts
 - ✓ Larger samples (statistics, diversity)
 - ✓ Extended energy coverage ?
- Synergy with 30m telescopes, JWST, GW detectors

Chance coincidence

Chance coincidence

HMXB classification

Antoniou et al, 2017

HMXB classification

Antoniou et al, 2017

Results

- •2393 sources detected (1095 > 5σ significance) (limiting $L_x \sim 3.5 \times 10^{32}$ erg/s; 0.5 7 keV @ 50% compl.)
- ~ 65 (Wing) 75 (Bar) sources per field
- •21 pulsars detected (Hong et al. 2017) (out of the 34 known in these regions)
- •A Be-XRB pulsar emerging from the companion circumstellar disk (Hong et al. 2016)
- •12 SNRs detected
- •128 sources associated with an OB star

SMC: The deep Chandra Survey

Magellanic Clouds

Nearest star-forming galaxies (50-60 kpc)

Advantages

- Probe very faint populations (Lx ~10³³ erg/s)
- Large populations of HMXBs (e.g. Haberl & Sturm 2016)
- Well determined star-formation history metallicity (1/5 Z₁ - 1/3 Z₁)

Magellanic Clouds

Nearest star-forming galaxies (50-60 kpc)

Advantages

- Probe very faint populations (Lx ~10³³ erg/s)
- Large populations of HMXBs
- Well determined star-formation history metallicity (1/5 Z_I - 1/3 Z_I)

Unique laboratories for the study of HMXBs

Address: formation efficiency of XRBs accretion physics, interaction of accretion flow and magnetic fields.

Survey sensitivity

15:00.0

10:00.0 1:00:00.0

55:00.0

50:00.0

45:00.0

0:40:00.0

105 HMXB candidates down to 5x10³² erg/s

-72:00:0

30:05.0

73:00:05.0

Looking ahead: Oth

Goal: A more complete picture of XRB formation/evolution

Need:

- Cover age /
 metallicity space
 Deep observations
 Uniform sensitivity
- Chandra HST synergy

10:00.0 1:00:00.0

55:00.0

The luminosity function:

Flat slope : $\alpha \sim 0.2 / 0.8$

Indication for break at

3x10³⁴ erg/s

consistent with accretion in a inhomogeneous environment and the onset of the propeller effect (c.f. Shtykovskiy & Gilfanov 2004).

