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What do we want?

MOAR ASTRONOMY



More Astronomy

The type of analysis you bring to bear on the data can 
have a significant impact on what inference is possible.



Example: Source Significance
❖ Back in the ‘90s, the best measure of the reality of a source was S/

N.  Now, we compute the probability of observing a background 
fluctuation of the same size as the observed data.
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to  

meant you went from needing 10 counts for a detection to 
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Example: SN 1987A

http://chandra.harvard.edu/photo/2017/sn1987a/



Example: SN 1987A
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Contemporaneous HST (left) and Chandra (right) from 2001-dec

Applying LIRA to Chandra image



The lesson from AXAF
AXAF deliberately and explicitly invested in analysis technology.

The AXAF Beta Sites at Chicago and Hawaii produced 
wavdetect1, and vtpdetect2, and helped to plan the toolset for 
CIAO.

and from whence the statistical foundations of Sherpa were aquihired

Chandra supported the collaboration between high-energy 
astrophysicists and statisticians via CHASC3,

which has given us pyBLoCXS4, the MCMC tool in Sherpa, also used to 
handle calibration uncertainty5,6, hardness ratio7 and aperture photometry8 
tools in CIAO and CSC, and LIRA9,10,11, among others.

1Freeman et al. 2002, 2Ebeling & Wiedenman 1993, 3Siemiginowska et al. 1997, 4van Dyk et al. 2001, 5Lee et al. 2011, 6Xu et al. 
2014, 7Park et al. 2006, 8Primini & Kashyap 2014, 9Esch et al. 2004, 10Connors & van Dyk 2007, 11McKeough et al. 2016



A Laundry List
A. Calibration issues

Analysis algorithms are often constrained by what is made 
possible by spacecraft design and what can be calibrated

B. New algorithms
Many new algorithms are currently being developed with 
Chandra data in mind, could make Lynx data more valuable

C. Advances in Statistics
New techniques are being developed by Statisticians, and 
will allow for better inferences to be drawn



PSF
❖ Lynx’s PSF will have more degrees of freedom (more shells, 

mirror adjustability) than Chandra’s and will need a 
correspondingly greater effort to characterize and use

❖ Need high-fidelity models of the mirrors and the detectors, and 
tools to deal with variations in energy and across the FOV

❖ Photometry via PSF-fitting in the Poisson regime is still not bread-
and-butter as in optical/IR

❖ Pileup could be a big problem because of high EA — mitigation 
via hardware (higher frame rates, oversampling) or software 
(modeling the pileup process, bootstrapping from the wings)

(A)



Pointings

❖ Chandra has shown the value of mosaic observations.  
Analysis tools to deal with such re-aligned datasets are 
still kludgey

❖ Need to consider strategies to handle absolute 
alignments of multiple observations

❖ Need tools for source confusion analysis

(A)



RMF
❖ Need to consider strategies to ameliorate and correct for long-term CTI and 

contamination

❖ Fitting global models to high-resolution calorimeter data is fraught with peril 
— we have had a taste with Chandra and XMM grating data, but Lynx data 
will push the boundaries in counts, resolution, and number

❖ fitting algorithms must learn to guard against model misspecification1, 
become more intelligent at discounting δχ where systematics are known to 
be large, find better ways to simultaneously fit spectra of different 
resolutions

❖ Improvements to atomic line databases (e.g., AtomDB, Chianti) must continue, 
and new algorithms are needed to propagate the highly non-linear error 
structure into analysis and inference

1 All models are wrong, but some are useful. — George Box (British Statistician) 

(A)

https://en.wikipedia.org/wiki/All_models_are_wrong


Disambiguate Overlaps
❖ The goal is to sift the photons that belong to overlapping sources 

into separate piles probabilistically and carry out spectral and 
timing analyses on them

❖ Use both spatial and rudimentary gross spectral information — 
Jones et al. 2015, ApJ 808, 137

❖ Use spatial, gross spectral, and temporal information — 
Campos et al., in development

❖ Use spatial and temporal information, and astrophysical 
spectral modeling information, hooked into Sherpa — Campos 
et al., contemplated

(B)



Disambiguate Overlaps
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- It looks like it’s doing a good enough job...

HBC 515 Aa+Ab weak-lined T-Tauri binary (Principe et al. 2016)

E-BASCS probability assignments based on spectral and temporal disambiguation

(B)



Non-parametric Fluxes

❖ eff2evt: convert measured photon energies to flux 
using detector QE and telescope EA

❖ Works fine when there are a lot of photons, but blows 
up when EA is small or events are sparse, and does 
not provide error bars

❖ New technique that accounts for possible range over 
which event can appear, and draws information from 
likely spectral model if available is in development

(B)

http://asc.harvard.edu/ciao/ahelp/eff2evt.html






Adaptive Segmentation
❖ csmooth: adaptively smooth image by enforcing a S/N

❖ Highly successful for displaying Chandra data, but 
difficult to do science with

❖ What if we could segment the events list based on some 
criterion for local similarity?

❖ Graphed oversegmented seeded region growing, with 
subsequent merging using likelihood ratio type tests 
— Minjie Fan et al. 2017, in preparation

(B)

http://asc.harvard.edu/ciao/ahelp/csmooth.html
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(b) Simulated Data
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(c) Constructed Graph
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(d) Seeds
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(e) Oversegmented Graph
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(f) Segmentation after Region Merging

Fan,  Lee  et al. 

Seeded Region Growing in Poisson Regime

[from Andreas Zezas]
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Seeded Region Growing in Poisson Regime

[from Andreas Zezas]



Multi-band Deconvolution
❖ Deconvolution and/or reconstruction is currently 

limited to images.  To derive spectral information 
requires making images in different bands and 
independently analyzing them

❖ Not optimal, because fewer counts in each image 
means larger errors, and independent analyses imply 
loss of connecting information

❖ Work is in progress to upgrade LIRA to simultaneously 
reconstruct images in multiple passbands

(B)



Robust Fitting
❖ There is a big problem with simultaneously fitting 

multiple datasets using a likelihood-based (χ2, cstat) 
statistic, if the sizes of the datasets differ significantly.  

❖ You can’t easily fit a high-resolution grating spectrum 
together with a low-resolution CCD spectrum, or an 
SED to spectroscopic and photometric data, or a small 
point source in the wing of a bright source

❖ Work is in progress to develop suitable weighting 
functions to loosen the tyranny of the bins

(B)



cstat gof

❖ A long standing problem with fitting spectra in the 
Poisson regime has been the lack of a measure of the 
goodness of fit when using cstat.

❖ A new parameterization of goodness of fit using the 
mean and stddev of expected cstat has been derived 
recently by Kaastra 2017, arXiv:1707.09202

❖ This is an encouraging breakthrough, but more work is 
needed!

(B)

https://arxiv.org/abs/1707.09202


New Stats

❖ We have got a lot of mileage out of χ2 and Maximum 
Likelihood and MaxEnt and wavelets

❖ Markov Chain Monte Carlo is becoming widely used

❖ What could be next?

(C)



New Stats
❖ Hierarchical Bayes

❖ ability to build complex models for inference and classification and account for large 
amount of interrelationships among model parameters and instrument behavior

❖ Gaussian Processes
❖ Continuous stochastic process that can be used to make extrapolations and 

distinguishing multiple trends from known or trained data

❖ Fiducial Inference
❖ Compute probabilities and confidence bounds without having to set up prior 

probability distributions

❖ Deep learning
❖ Applying multi-level, cascading non-linear transformations (aka artificial neural 

networks) to extract relevant features from a dataset (aka Machine Learning)

(C)



The Ω Group
❖ An informal ωG, just send one of us an email to “join”.  We 

will also be recruiting real statisticians to consult with.
❖ Pat Broos
❖ Peter Freeman
❖ Vinay Kashyap
❖ Andrew Ptak
❖ Aneta Siemiginowska
❖ Alexey Vikhlinin
❖ Andreas Zezas


