

X-ray Insights into the Earliest Stages of a Radio Source Evolution

Małgosia Sobolewska (CfA, CXC)

Collaborators –

Aneta Siemiginowska (CfA)

Giulia Migliori (CEA-Sacley, France)

Matteo Guainazzi (ESA, Spain)

Martin Hardcastle (University of Hertfordshire, UK)

Luisa Ostorero (University of Torino, Italy)

Łukasz Stawarz (Jagiellonian University, Poland)

Giga-Hertz Peaked-Spectrum Radio Sources (GPS)

O'Dea 1998, Stanghellini 2003, Labiano et al. 2007, Edwards & Tingay 2017, Callingham et al. 2017

GPS sources

- radio spectral turnover frequency ~1 GHz
- < 1 kpc radio size</p>

GPS spectral classification

+ symmetric radio structure (two-sided, dominated by mini-lobes/hotspots)

= Compact Symmetric Objects (CSOs)

Tingay, de Kool (2003), 22 GHz VLBI radio imaging

CSOs are seen perpendicular to the jet axis.

Early Stages of a Radio Jet Evolution – Motivation

In CSOs with multi-epoch radio monitorings, kinematic methods indicate that CSO radio jets may be very young, < 3000 years old (An & Baan 2012).

Unique opportunity to study the AGN-galaxy feedback process:

- galactic conditions at the time of a radio jet launch and initial jet expansion,
- impact of the young expanding jet on its host galaxy.

CSOs have been argued to be among the progenitors of large scale radio galaxies:

Current Status: X-ray Properties of CSOs

- 16 CSOs with redshift z < 1, and measured kinematic ages of the radio structures ~2010; Chandra and XMM-Newton observations revealed that CSO form a heterogeneous X-ray population and expand into diverse environments.
- 100% CSO X-ray detection rate with even short 2–5 ksec Chandra exposures, 2-10 keV X-ray fluxes 10⁻¹⁴ 10⁻¹³ erg cm⁻² s⁻¹.
- Deeper X-ray observations to discriminate among models of CSO X-ray emission (jet, radio lobes, X-ray corona, shocked ISM, etc.);
 9 CSOs, 30–55 ksec.
- Detection of OQ+208 above 10 keV with NuSTAR. The youngest and most compact source, PKS 1718-649, is a **gamma-ray emitter** (Fermi/LAT).

- Details -

Siemiginowska, Sobolewska, et al. 2016, ApJ, 823, 57. Migliori, Siemiginowska, Sobolewska, et al. 2016, ApJL, 821, 31. Sobolewska et al. 2017, in preparation.

Current Status: X-ray Properties of CSOs

- 16 CSOs with redshift z < 1, and measured kinematic ages of the radio structures ~2010; Chandra and XMM-Newton observations revealed that CSO form a heterogeneous X-ray population and expand into diverse environments.
- 100% CSO X-ray detection rate with even short 2–5 ksec Chandra exposures, 2-10 keV X-ray fluxes 10⁻¹⁴ 10⁻¹³ erg cm⁻² s⁻¹.
- Deeper X-ray observations to discriminate among models of CSO X-ray emission (jet, radio lobes, X-ray corona, shocked ISM, etc.);
 9 CSOs, 30–55 ksec.
- Detection of OQ+208 above 10 keV with NuSTAR. The youngest and most compact source, PKS 1718-649, is a **gamma-ray emitter** (Fermi/LAT).
- X-ray unobscured vs. obscured CSOs.
 Are the CSO jets young, or are they confined by their environment?
 (e.g. Phillips & Mutel 1982, van Breugel+1984, Kunert-Bajraszewska et al. 2010)

- Details -

Siemiginowska, Sobolewska, et al. 2016, ApJ, 823, 57. Migliori, Siemiginowska, Sobolewska, et al. 2016, ApJL, 821, 31. Sobolewska et al. 2017, in preparation.

Radio Perspective: 5 GHz luminosity vs. size of CSOs

Radio Perspective: 5 GHz luminosity vs. size of CSOs

Black squares:

CSO with intrinsic $N_H > 5 \times 10^{23} \, cm^{-2}$ (XMM, Tengstrand et al. 2009, Vink et al. 2006 Guainazzi et al. 2004; Beppo-SAX, Risaliti et al. 2003)

Gray squares:

Compton Thick CSO candidates (Chandra; Siemiginowska et al. 2016)

Chandra/XMM test of CSO X-ray absorption properties

Sobolewska et al., in prep.

PKS 1934-63

- Serendipitous source seen in Chandra/XMM.
- Iron line emission comes from the position of the secondary source.
- CSO is **not** Compton Thick.

PKS 1946+708, 1607+26

Chandra (XMM): **not** Compton Thick.

PKS 2021+614

XMM data confirm the source **is heavily absorbed**.

absorbed PL

Energy (keV)

10°

Radio/X: Environment may affect the initial jet expansion

S16: Siemiginowska, Sobolewska et al. 2016; Sobolewska et al., in prep.

How are we going to push it forward?

- Ongoing and future radio surveys fundamental to the identification of the compact radio sources (Tremblay et al. 2016, Callingham et al. 2017)
- Multi-epoch radio monitorings needed to derive kinematic ages of the CSO radio jets.

Chandra

Lynx

X-ray studies of the most compact radio jets and the environments into which they expand require arcsec spatial resolution, high sensitivity, and collective area at soft energies.

Near term science goals

- Expand the Chandra X-ray CSO sample, observe sources with recent radio CSO identification.
- Include more evolved, > 1kpc, symmetric radio sources to enable statistically robust evolutionary studies.
- Verify that some radio jets can be confined at a very early stage of their expansion (young jet vs. confined jet).
- Study radio/X-ray variability, and the NHI (radio) – NH (X-ray) correlation (Ostorero+17).
- In the nearest sources, resolve and study X-ray emission extended on arcsec scales.

- Physics of FeedbackAGN/jet/galaxy interactions
- Physics of Plasmas
 acceleration of particles in a newly formed
 jet, emission of shocked ISM
- Evolution of Structure and AGN
 populations
 evolutionary paths leading to the large scale
 jet formation and FRI/FRII dichotomy

X-rays in the Multi-wavelength,

Multi-Messenger Era
ongoing and future radio surveys identify the
candidates, long term radio monitorings
constrain age of the jets, broad-band SED
needed to constrain model parameters