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X-ray surface brightness peaks in cluster cores

Lewis et al. 2003, Allen et al. 2004

• 100 – 1000 M⊙ per year gas cooling?

X-ray radiative cooling time

Voigt & Fabian 2004
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• Searches for vast reservoir of molecular gas find less than 10% of that expected 

(Edge '01, Salomé + Combes '03) → residual cooling

• AGN heating replaces radiative losses → feedback loop

• Truncates galaxy growth, keeps ellipticals ‘red and dead’, M-σ relation

MS0735, McNamara et al. 2005

200 kpc

Optical, X-ray, Radio

Radio jets heat cluster gas 
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Rafferty et al. 2006; Birzan et al. 2004; Fabian 2012
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• Origin of molecular gas in BCGs?  

• Is molecular gas fuelling feedback?

• Does radio-jet feedback operate on molecular clouds?

• BCGs in cool core clusters are rich in molecular gas
(Edge 2001, Salomé & Combes 2003)

What is the role of molecular gas in feedback?

CO detections on Hα image

Perseus: Hα

Fabian et al. 2003; 
Conselice et al. 2001;
Lim et al. 2008; 
Salome et al. 2011



• Origin of molecular gas in BCGs?  

• Is molecular gas fuelling feedback?

• Does radio-jet feedback operate on molecular clouds?

• BCGs in cool core clusters are rich in molecular gas
(Edge 2001, Salomé & Combes 2003)

What is the role of molecular gas in feedback?

Chandra/Lynx: hot gas, energy output ALMA: cold gas, fuelling?
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ALMA capabilities

Credit: ESO

• 50 x 12m antennas in the 12m Array plus 12 x 7m and 4 x 12m antennas in the ACA

• Range of configurations with baselines up to 16km (0.013” at 300GHz)

• Receiver bands cover 84 to 950GHz in atmospheric windows

• ALMA will image CO in MW-like galaxies out to 

z=3 and [CII] or dust continuum in moderate 

starburst galaxies to epoch of reionization

• Dynamical black hole masses eg. NGC1332 

6.6±0.6 x 108 M⊙
Barth et al. 2016



0.3”

0.5 kpc

• Massive filaments each ~ a few x 10
9

– 10
10

M⊙ and 3 – 15 kpc long

Russell et al. 2016, 2017, submitted

PKS0745

Extended filaments of molecular gas

CO(2-1)

Phoenix

CO(3-2)
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Low velocities and low dispersions

• Modest velocities ±100 km/s, narrow FWHM ~100 km/s

• Gas not settled in gravitational potential

• Merger origin unlikely

Russell et al. 2016

Velocity map Velocity dispersion

PKS0745

PKS0745:

Beam: 0.3”, 0.5 kpc
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Smooth velocity gradients along filaments

A1795:

Velocity map Velocity dispersion

Beam size: 0.7 arcsec, 0.8 kpc

• Smooth gradient 0km/s to -370km/s

• Low FWHM ~100km/s

Russell et al. submitted



• A1795: molecular gas 2.5 x 10
9

M⊙ around N radio lobe

• Smooth velocity gradient from 0 to -370 km/s

Integrated CO(2-1) intensity Jy.km/s Line of sight velocity (km/s)

Russell et al. submitted

Radio lobes

Molecular gas

Molecular gas filaments encase radio bubbles



Molecular gas filaments encase radio bubbles

• Phoenix: filaments encase lower half of radio bubbles

• 3 x 1010M⊙ of molecular gas total with half in filaments around radio 

bubbles

30 kpc

CO(3-2)

Russell et al. 2017

HST

McDonald + SPT collaboration 2012

cavity
positions
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Molecular gas filaments extend toward radio bubbles

Sanders et al. 2014Russell et al. 2016

• PKS0745 + A1835: filaments drawn up underneath X-ray cavities and 

radio lobes

2kpc

X-ray cavities

PKS0745

A1835

McNamara et al. 2014



Direct uplift of molecular gas clouds or cooling in situ?

Integrated CO(2-1) intensity Jy.km/s

A1795

Phoenix

PKS0745
• Direct uplift of molecular gas clouds?

• Pmech ~ 10
43-45

erg/s

• High coupling efficiency required

• Rapid cooling of uplifted thermally unstable 

low entropy gas?

• Molecular gas coincident with soft X-ray

• Dust lanes



Direct uplift of molecular gas clouds or cooling in situ?

Integrated CO(2-1) intensity Jy.km/s

A1795

Phoenix

PKS0745
• Direct uplift of molecular gas clouds?

• Pmech ~ 10
43-45

erg/s

• High coupling efficiency required

• Rapid cooling of uplifted thermally unstable 

low entropy gas?

• Molecular gas coincident with soft X-ray

• Dust lanes

• But molecular gas mass divided by buoyancy 
time exceeds XMM-RGS limits

• XCO factor too large? Factor of two 
possible (Vantyghem et al. submitted)

• Gas cools over multiple AGN outbursts



A closely coupled feedback loop

log(temperature/K)Revaz et al. 2008

Sanders et al. 2014

PKS0745

• Rising bubbles that heat X-ray atmospheres simultaneously promote 

cooling in their wakes (stimulated feedback, McNamara et al. 2016)

• Inflows fuelling subsequent AGN outbursts?

Bubble simulation

Russell et al. 2016



Phoenix cluster: ordered gas flow to centre

• Smooth velocity gradients and low FWHM in filaments

• Velocity gradient across nucleus with much higher FWHM

• Velocities too low for free fall in gravitational potential

Russell et al. 2017

CO(3-2)



Molecular gas disks on few kpc scales

• Additional velocity component close to the BCG systemic velocity with smooth 

gradient across the nucleus

3 kpc

Integrated CO(1-0)
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Phoenix

A1664

Russell et al. 2014, 2017

HST



• CO(2-1) absorption features with ~5km/s linewidth typical of GMC and 

infalling velocity 250-350 km/s

David et al. 2014

NGC5044 + A2597: absorption features

NGC5044
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Tremblay et al. 2016

A2597



Lynx science

• Hitomi results for Perseus: X-ray velocity gradient matches that along 

Hα/CO filaments

• Dissipation and distribution of jet energy over large scales

• Regulation of gas cooling and AGN fuelling

• Detection of cavities, soft X-ray filaments, complex structure

• Jet power, gas velocities, X-ray cooling rates

Abell 1795

100ks observation



Lynx science

• Hitomi results for Perseus: X-ray velocity gradient matches that along 

Hα/CO filaments

• Dissipation and distribution of jet energy over large scales

• Regulation of gas cooling and AGN fuelling

• Detection of cavities, soft X-ray filaments, complex structure

• Jet power, gas velocities, X-ray cooling rates

Abell 1795



• Molecular gas structure shaped by radio bubble expansion

• Massive 109-1010M⊙ filaments drawn up around and beneath radio 
bubbles

Conclusions

• Molecular emission lines are narrow

• Extended filaments, ordered velocity 
structure

• Gas not settled in gravitational potential

• Circulation flow

• Radio bubbles supply large-scale heating to 
stabilise cluster atmospheres and lift gas in 
their wakes

• Long-lived feedback loop

Phoenix

PKS0745





Highest velocities at largest radii

McNamara et al. 2014

A1835

●10
10

M molecular flow at 200-400 km/s extending to 10kpc

A1835:



A1835 CO(3-2)

2kpc

●Gas filaments drawn up around radio bubble

●Interaction with cold gas in radio-mode feedback

A1835: gas flow drawn up around the X-ray cavities

McNamara et al. 2014



●CO(2-1) absorption features with ~ 5 km/s linewidth typical of GMC and 

infalling velocity 250-350 km/s

David et al. 2014

Filaments consist of many GMCs

NGC5044
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A2597


