

Stellar Coronal Studies at High Spectral Resolution with *Lynx*

Nancy S. Brickhouse

Harvard-Smithsonian Center for Astrophysics

Outline

- Introduction
- Selective Chandra results and the case for higher spectral resolution and area
 - O EMD and N_e: Capella
 - O Polar emission: 44 Boo
 - Non-dipole fields: AB Dor
 - Accretion: TW Hya
- A word on the future of stellar studies
- Conclusions

Introduction: Issues in Stellar Coronae

- Magnetic field generation via dynamo
 - Does the activity/rotation relation hold for low mass stars?
- Coronal heating and radiation
- > Evolution of magnetic activity
 - Angular momentum loss in accreting stars
 - Accretion shocks
- Flares and coronal mass ejections (CMEs)
- Stellar wind drivers

EMD and N_e: Capella

- EMD sharply peaked
- High N_e at peak EMD T_e $> N_e = 1.8 \times 10^{12} \text{ cm}^{-3} \text{ (Mg XI)}$
- N_e below EMD peak T_e $> N_e < 2.0 \times 10^{10} \text{ cm}^{-3}$ (Ne IX, Ness+ 2003)

Modeling Stellar Coronal Structure and

Heating

- Classical loop models can produce EMD shape but not high N_e (Testa+2005)
- Solar-type nanoflare heating models (Cargill & Klimchuk 2006):
- **OEMD Model ok**
- ON_e at peak ok
- O Solar dynamo not applicable
- BUT N_e at lower T_e is low (Ness+2003), lower than the models by a couple orders of magnitude

Testing Nanoflare vs Alfvén Wave Heating Models

Compare DR satellites to He-like diagnostics

- Nanoflare models should show non-equilibrium ionization (NEI) effects
- Alfvén waves produce steady heating from below corona, so collisional ionization equilibrium (CIE) (Asgari-Targhi & van Ballegooijen 2011)
- Highly sensitive T_e diagnostic needed to distinguish NEI from CIE

High Resolution and Area Needed

Brickhouse+ in progress

Lynx High Resolution Grating for Diagnostics

Thermal Velocity Measurements at R=5000

Polar Emission: 44 Boo

- Eclipsing contact binary
- 6.4 hr period
- Chandra line centroids vary by 180 km/s
- Doppler-broadened lines 550 km/s
- No eclipses in light curve

59 ksec Chandra constrains location of emission

Two North Poles: AB Dor

- Single ZAMS star
- 0.51 day period
- v sin*i* = 90 km/s
- Chandra HRC/LETG line shifts constrain emission
- Rotational modulation of Chandra light curves, in conjunction with Doppler imaging, suggests the poles have the same polarity (Hussain+ 2007)
- BUT HETG does not reproduce line shifts, though more sophisticated cross-correlation technique places most of the corona at the pole (Drake+ 2015)

Hussain+ 2007

Lynx Grating Needed for Velocity Studies

Accretion: TW Hydrae

Classical T Tauri Star

- i=7° (Qi et al. 2004)
- $M = 0.8 M_{Sun}$
- $R = 0.7 R_{Sun}$
- Distance 57 pc
- 10 million yr old
- Poised to make planets
- X-ray plasma has high Neon abundance (Kastner+ 2002; Drake+ 2005)

Romanova et al. 2004

He-like Line Ratio Diagnostics

He-like Energy Levels
N_e and Te Diagnostic Ratios
(Smith+ 2009)

Chandra HETG ~500 ksec (Brickhouse+ 2010)

10 F

9.15

9.20

9.25 9.30 Wavelength (Angstroms)

Accretion shock models → T_e and N_e for given M_{acc}

X-Ray Line Ratio Diagnostics for Density and Temperature

$$N_e = 6 \times 10^{12} \text{ cm}^{-3} \text{ Mg XI}$$

 $3 \times 10^{12} \text{ Ne IX}$
 $6 \times 10^{11} \text{ O VII}$

 $T_e = 2.50 \pm 0.25 \text{ MK}$

This looks like the accretion shock!

Neon Region of HETG Spectrum

Spectrum shows strong H-like Ne X and He-like Ne IX, up to n=7 or 8 in Ne X.

Series lines rule out resonance scattering

O VII: $N_H = 4.1 \times 10^{20} \text{ cm}^{-2}$

Ne IX: $N_H = 1.8 \times 10^{21} \text{ cm}^{-2}$

Accretion Diagnostics Vary

Brickhouse+ 2012

Models from Chandra Seem OK

- Measure T_e , N_e , and N_H from Ne IX
- Assume dipole field and
- Assume absorption from incoming stream
- Model gives reasonable accretion rate range

BUT

- Assumption 1 is wrong. TW Hya has a dominant "octupole" field
- Assumption 2 seems ok for TW
 Hya, but resonance scattering
 remains a possibility. Also, at
 higher accretion rates the stellar
 atmosphere might absorb
- In TW Hya, O VII does not fit shock cooling: N_e and N_H from O VII are too low
- In other systems Ne IX does not always show high N_e

All systems show excess O VII

Gudel & Telleschi 2007; Robrade & Schmitt 2007

Lynx Model of Accretion + Corona

Wavelength (Angstrom)

Accretion studies on young stars should be a component of a new Lynx pillar on Stellar Life Cycles!

Future Stellar Studies

- Searching for signs of life
- Focused on low mass M dwarfs
- Habitable zones are closer to star
- Issues include destruction of atmosphere by:
 - Stellar flares and concurrent CME's (Linsky today?)
 - AD Leo can recover from massive flare/proton flux (Segura+ 2010)
 - Stellar UV to X-ray radiation (Linsky today?)
 - But UV is promising for catalyzing prebiotic chemistry (Ranjan & Sasselov 2016)
 - Stellar winds (Garaffo+ 2017; Wargelin & Drake 2002)
 - But planet's B field may channel particles only to polar regions (Driscoll+ 2013)

Conclusions

- Chandra shows active star coronae are more dense and "isothermal" than the Sun and emission occurs near poles.
- Chandra and XMM-Newton grating spectroscopy only available for a few dozen (active) stars.
- The soft X-ray spectrum (< 1 keV) provides unique diagnostics for accretion studies.
- A Lynx grating (R > 5000) and high Area broadens the types of stars we can study, introduces new diagnostics, and opens up the velocity window.
- Accretion should be a major component of a 3rd Lynx pillar: Stellar Life Cycles