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MINEFIELDS AHEAD

High-resolution spectra come with unintuitive challenges, caused by 
sparsity, detectability, and background


I. (RT Cru) Weak lines in high background

II. (UV Cet AB) Disentangling overlapping lines from contaminating 
companions



I. WEAK LINES IN HIGH BACKGROUND
• RT Cru is a symbiotic system at 2.5 

kpc, with a high mass WD (1.3 M⊙) 
accreting from a M5III giant

• Exhibits aperiodic flickering, with 
heavily absorbed hard power-law 
component, strong lines from Fe XXV, 
Fe XXVI, and FeKα, and possibly an 
absorbed soft thermal component

X-ray variability of RT Cru 4803

Table 1. Chandra Observations of RT Cru.

Instrument Gratings Seq. no. Obs. ID & PI UT start UT end Time (ks)

HRC-S LETG 300332 16688, Karovska 2015 Nov 23, 02:01 2015 Nov 23, 09:38 25.15
HRC-S LETG 300332 18710, Karovska 2015 Nov 23, 22:42 2015 Nov 24, 14:13 53.73
ACIS-S HETG 300171 7186, Sokoloski 2005 Oct 19, 10:21 2005 Oct 20, 16:31 49.34

To implement our hardness ratio analysis, we employed the CIAO

function dmcopy to copy events from the L1-event file (reprocessed
by acis process events) based on a GTI table made for each
state (high/soft and low/hard states defined in Section 3.2). We then
reprocessed the copied L1-event file with the CIAO standard functions
(tg resolve events and tgextract) to create the pha file.
We merged the m = ±1 order MEG and HEG data using the CIAO

tool combine grating spectra to make the time-averaged
spectrum, low/hard-state and high/soft-stat spectra.

3 DATA A NA LY S I S A N D R E S U LTS

3.1 Light curves

To investigate the variability and hardness ratios of RT Cru during
the HRC-S/LETG observations in 2015, we utilized the CIAO tool
dmextract to create light curves in different energy bands and
with different binning. For these hardness ratios, we chose the soft
band (S: 0.3–4 keV) and the hard band (H: 4–8 keV). We binned the
time series at 60 and 600 s intervals in order to detect any flickering
variations and possible periodic brightness modulations of binary
orbital periods or WD rotation periods. We used the toolsefsearch
and powspec from XRONOS timing analysis software package v5.22
(Stella & Angelini 1992) to search for periodic modulations in the
light curves binned at 60 s in different energy bands. Although the
light curves show aperiodic flickering variations, we did not detect
any periodic modulations. This agrees with the previous studies
(Luna & Sokoloski 2007; Kennea et al. 2009; Ducci et al. 2016). We
used the HRC-S/LETG light curves binned at 600 s for our hardness
ratio analysis, and to create GTI tables for filtering observational
events according to the HR diagrams (shown in Fig. 3).

Fig. 1 shows the HRC-S/LETG light curves of RT Cru binned
at 600-s intervals in the 0.3–8 keV energy band (S + H), whereas
the S band (0.3–4 keV) and the H band (4–8 keV). The light curves
present the net counts and were background subtracted. We notice
that the light curves are dominated by the background noise in several
intervals, so it was necessary to carefully handle both, the source and
background, as different data sets and simultaneously model both of
them in the spectral analysis. In Fig. 1, we also plotted the hardness
ratios HR1 and HR2 described in Section 3.2. The binned light-curve
points plotted by blue squares and red triangles are according to the
low/hard and high/soft spectral states classified on the HR diagrams
in Section 3.2, respectively.

To analyse the hardness ratios of the ACIS-S/HETG observation
of RT Cru in 2005, we also employed the ‘ACIS Grating Light Curve’
(aglc) program3 developed by Huenemoerder et al. (2011) in the
‘Interactive Spectral Interpretation System’4 (ISIS; Houck & Denicola
2000) to generate the light curves in 60-s and 600-s bins for three
bands: the soft band (S: 0.3–4 keV), the hard band (H: 4–8 keV),
and 0.3–8 keV broad-band (S + H: 0.3–8.0 keV). We did not detect

3http://space.mit.edu/cxc/analysis/aglc/
4http://space.mit.edu/asc/isis/

Figure 1. From top to bottom: the HRC-S/LETG light curves of RT Cru
binned at 600 s in the 0.3–8 keV broad-band (S + H), 0.3–4 keV energy (S),
4–8 keV energy (H), and the hardness ratios HR1 = H/S and HR2 = (H −
S)/(S + H), obtained from the source and background light curves using the
BEHR. The time unit is kilosecond (starts at 2015-11-23 02:01). The energy
band unit is counts. Plots show only bins with both statistically significant
S and H bands. The X-ray source denoted by blue squares and red triangles
are classified under the low/hard and high/soft states, respectively (see
Fig. 3).

any periodic modulations in the light curves binned at 60 s. The
ACIS-S/HETG light curves binned at 600 s were used to conduct
the hardness ratio analysis and generate GTI tables for separating
observational events according to the low/hard and high/soft spectral
states in the HR diagrams (see Fig. 4).

MNRAS 500, 4801–4817 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/4/4801/5983105 by guest on 18 N
ovem

ber 2021

Danehkar et al. 2021

4804 A. Danehkar et al.

Figure 2. The same as Fig. 1, but for the ACIS-S/HETG light curves of
RT Cru with a bin size of 600 s. The hardness ratios HR1 and HR2 were
derived from the source light curves using the BEHR.

In Fig. 2, we plotted the light curves of RT Cru derived from
the ACIS-S/HETG data with a bin size of 600 s for the broad S + H
energy band (0.3–8 keV), the S band (0.3–4 keV), and the H band (4–
8 keV). The light curve units are in counts. The ACIS-S, in contrast
to the HRC-S, has a negligible background noise in extracted spectra
for the exposures analysed here. Fig. 2 also shows the hardness ratios
HR1 and HR2 defined in Section 3.2. Similarly, we also plotted the
binned light curves in the low/hard and high/soft states according
to the HR diagrams (see Section 3.2) using blue squares and red
triangles, respectively.

3.2 Hardness ratios

We conducted the hardness ratio analysis based on the light curves
binned at 600 s extracted from the soft and hard energy bands. Similar
hardness ratio studies of RT Cru have been carried out by Kennea
et al. (2009), Ducci et al. (2016), and Luna et al. (2018). Hardness
ratio spectral analyses have been also used to separate the soft thermal

Figure 3. Hardness ratio diagrams of the HRC-S/LETG data: the hardness
ratios HR1 = H/S (top panel), and HR2 = (H − S)/(S + H) (bottom panel)
plotted against the energy band 0.3–8 keV (S + H; in counts) binned at 600
s. The hardness ratios were calculated using the BEHR from the source and
background light curves. The X-ray source in the low/hard and high/soft
states is denoted by blue squares and red triangles, respectively. Plots show
only bins with both statistically significant S and H bands.

components and the hard non-thermal components in Chandra X-
ray surveys (see e.g. Brassington et al. 2008; Plucinsky et al. 2008),
as well as X-ray studies of active galactic nuclei (e.g. Worrall et al.
2010; Danehkar et al. 2018).

We calculated the hardness ratios (HR1 and HR2) using the
following definitions and the light-curves binned at 600 s in the soft
(S: 0.3–4 keV) and hard (H: 4–8 keV) bands:

HR1 = H/S, (1)

HR2 = (H − S)/(S + H ). (2)

To propagate uncertainties of the source and background counts, we
employed the Bayesian Estimator for Hardness Ratios (BEHR; Park
et al. 2006).

The hardness ratios HR1 and HR2 of the HRC-S/LETG light curves
binned at 600-s intervals are shown in Fig. 1 (two bottom panels). For
the HRC-S/LETG observations, we also plotted the hardness ratios
HR1 and HR2 versus the 0.3–8 keV energy band (H + S) in Fig. 3. It
is seen that there is an anticorrelation between the hardness ratio HR1

and the brightness, which is in agreement with Kennea et al. (2009),
Kashyap et al. (2013), and Ducci et al. (2016). The light curves shown
in Fig. 1 were also classified under the low (hard) and high (soft)
states based on the HR2 versus S + H diagram of Fig. 3. The division
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the 4065 s binned time series; the ratio s/sexp in this case is 3.35
(s ¼ 22:1% and sexp ¼ 6:6%). In the 4.0Y8.0 keVenergy range,
the 508 s binned time series has s/sexp ¼ 1:36 (s ¼ 16:6% and
sexp ¼ 12:2%), and the 4065 s binned time series has s/sexp ¼
1:42 (s ¼ 6:1% and sexp ¼ 4:3%).

We do not detect any periodic flux modulations. We are theo-
retically sensitive to an oscillation with fractional amplitude
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where C tot is the total number of counts in the observation
( ignoring the small number of background counts, which have a
negligible effect), " and # are small numbers related to the chance
that a noise power in the power spectrum will exceed the detec-
tion threshold (both taken to be 0.05), nfreq is the number of fre-
quencies searched (nfreq ¼ 1644), and ! has an average value of
0.77 and depends on the location of the signal frequency in the
frequency bin (see, e.g., van der Klis 1989; Sokoloski 1999). We
are therefore sensitive to oscillations with fractional amplitudes of
&8% in regions of the power spectrum dominated bywhite noise,
which in this case consisted of frequencies greater than&1.4mHz.
In this analysis, we binned the time series in 15 s bins (i.e., 6 times
the frame time). We were therefore sensitive to oscillations with
periods as short as 30 s andmost sensitive to oscillations with pe-
riods between 30 s and 12 minutes.

Consistent with the presence of flickering in the light curves,
the power spectrum rises at frequencies below 1.4 mHz. At these
low frequencies, the power spectrum has a power-law index (i.e.,
slope on a log-log plot) of about %1. This ‘‘1/f noise’’ at low
frequencies reduces our sensitivity to oscillatory signals with pe-
riods greater than approximately 12minutes. Sincewe expect the
minimum oscillation amplitude to which we are sensitive to in-
crease roughly as the square root of the rising average broadband
power as we go to lower frequencies (i.e., longer periods), the os-
cillation amplitude required for detection increases gradually from
k8% to k15% as we move from periods of 12 minutes to 1 hr.
Taking into account the underlying broadband power, as well as
the number of frequency bins searched,we did not detect any statis-
tically significant oscillations in any portion of the power spectrum.

4. DISCUSSION

4.1. Interpretation of the Chandra Observations

To estimate the radius of the accreting compact object, we take
the unabsorbed 0.3Y8.0 keV X-ray luminosity, LX, to be either
approximately equal to or a rough lower limit to the emission from
an accretion disk boundary layer (we justify the assumption that
theChandraX-ray emission emanates from a boundary layer in the
paragraphs that follow). Comparing this luminosity with that ex-
pected from accretion, (1/2)(GMṀ/R)kLX, the radius of the ac-
creting compact object is

R P3:2 ; 108 cm
M

1:3 M'

# $
Ṁ

1:8 ;10%9 M' yr%1

# $
; ð3Þ

where R and M are the radius and mass of the accretor, respec-
tively, and Ṁ is the rate of accretion through the boundary layer.
The radius is that of a WD. The Chandra X-ray spectrum there-
fore confirms that the compact object is a WD.
To determine whether theChandra-band X-ray emission is in-

deed from an accretion disk boundary layer, we consider the rapid
variability. Rapid flickering typically emanates from an accretion
region close to a compact object. Our detection offlickering there-
fore suggests that the X-ray emission detected from RT Cru by
Chandra is powered by accretion. This accretion could proceedvia
a wind-fed accretion disk, magnetic accretion columns, or Bondi-
Hoyle-type direct impact of the accreting material onto the WD.
While the two-component (thermal plasma plus power law) model
provides a formally acceptable fit to the data, it is difficult to con-
struct an interpretation of this model that is consistent with the
rapid flickering from accretion onto a WD. The isobaric cooling

Fig. 2.—Iron-line complex from the combined HEG and MEG first-order
(m ¼ (1) spectrum. The best-fit model of a power law plus three Gaussian emis-
sion lines is overplotted. The bottom panel shows the residuals, in the same units
as Fig. 1.

TABLE 2

Iron Lines

Parameter Fe xxv Fe xxvi Fe K!

Line center a ( keV) ................ 6:946þ0:013
%0:013 6:693þ0:013

%0:016 6:379þ0:020
%0:021

EWb (eV) .............................. 72 60 108

a Superscripts and subscripts represent 90% confidence upper and lower
limits, respectively.

b Gaussian fit equivalent widths. EW uncertainties are on the order of
10%Y15%.

Fig. 3.—Chandra light curves for RT Cru, with a bin size of 508.28 s. The
light curves include the undispersed light, as well as the counts from the HEG
and MEG m ¼ (1 orders. The top and bottom panels show the flux as a func-
tion of time in the energy ranges 0.3Y4.0 and 4.0Y8.0 keV, respectively. The
0.3Y4.0 keV emission is clearly variable on timescales of minutes to hours.
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• RT Cru is a symbiotic system at 2.5 
kpc, with a high mass WD (1.3 M⊙) 
accreting from a M5III giant

• Exhibits aperiodic flickering, with 
heavily absorbed hard power-law 
component, strong lines from Fe XXV, 
Fe XXVI, and FeKα, and possibly an 
absorbed soft thermal component

• Observed with Chandra HRC-S/LETG 
in Nov 2015 for ≈79 ks explicitly to 
search for lines at longer wavelengths

• Where are the soft thermal lines?

I. WEAK LINES IN HIGH BACKGROUND



I. HOW WELL DO YOU KNOW YOUR BACKGROUND?

• Suppose you have a model for the background, 
g(λ), but the actual background is f(λ)

• Trivially, f(λ) = g(λ)⋅[f(λ)/g(λ)]

• the ratio of densities can be expressed in quantile 
form, a comparison density

d(u; F,G) = f(G-1(u))/g(G-1(u)), u:=G(λ) ∈ [0,1]

• the skew-G density model, a non-parametrically 
designed parametric modeling of d(u), with 
orthonormal basis functions, e.g., shifted Legendre 
polynomials

• number of terms set via a model comparison 
statistic like BIC

Algeri 2020, PhysRevD, 101, 015003; Zhang et al. 2023, MNRAS, 521, 969
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I. HOW WELL DO YOU KNOW YOUR BACKGROUND?

Why do it this way?

1. data-driven measure of complexity in background

2. increase power by discarding information about 
normalization, work with cumulative distributions

3. easily transferable from background to source data

4. general detection method for arbitrary features

Algeri 2020, PhysRevD, 101, 015003; Zhang et al. 2023, MNRAS, 521, 969
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RT CRU UPPER LIMITS VIA POWER Zhang et al. 2023, MNRAS

Some of the expected 
strong lines from 
thermal emission.

Locations of lines are 
marked by vertical lines 
and line spreads by 
yellow shades.

Fe lines, IrM edge, and 
unidentified line at 
16.93 Å are detected.

The rest require upper 
limits to be set.

[Fe complex] [IrM edge] [Ne X]

[Fe XVII] [Fe XVII] O VIII

O VII r O VII i O VII f
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Table 4. Summary of our background correction results for each calibration region. The first two columns are the combined calibration regions and corresponding 
combined wavelength ranges.The third column reports the number, m , of coefficients selected out of M = 10, for each of the combined regions considered. The 
p-values adjusted for post-selection using the Bonferroni, K , and naive corrections and corrected for multiple hypothesis testing via Sidak (see 18 ) are given in 
the fourth, fifth, and sixth columns, respectively. The size of the source-free sample N w for each of the combined regions w = 1, . . . , 5 are given in the last 
column. 
Combined Wavelength m Bonferroni K Naive N w 
regions ( C w ) range in Å (Sidak) (Sidak) (Sidak) 
C 1 1.65–2.05 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 6879 
C 2 5.5–10.2 1 3.7687e-10 

(1.8843e-09) 3.7687e-10 
(1.8843e-09) 3.6797e-06 

(1.8398e-05) 75699 
C 3 11.5–13.0 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 22809 
C 4 14.6–17.4 1 0.0004 (0.0020) 0.0004 (0.0020) 0.0796 (0.3396) 41 186 
C 5 18.5–23.0 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 63 372 
Sidak adjusted p-values calculated as in ( 18 ) with R = 9 are 
reported in parenthesis. Recall that our estimator and test statistics are 
constructed by sorting the estimated coefficients ̂ θ( j ) in ( 4 ). Hence, 
choosing m to be the point of truncation implies that inference and 
estimation are performed considering only the m largest estimated 
coefficients. 

F or re gions W 1 and W 2 , the Bonferroni, and K adjusted p- 
values are smaller than the global significance level α = 0.05 
even after implementing Sidak’s correction. Whereas, the p-values 
adjusted for post-selection by means of the naive method, only detect 
significant deviations o v er re gion W 2 . As discussed in detail in 
Section 4.3 , this result is not surprising since the naive approach 
is the most conserv ati ve among the three methods considered. 
The adjusted p-values for the remaining regions are all equal to 
one. This implies that our smooth tests analysis allows us to 
claim that deviations from the background occur only on regions 
W 1 and W 2 . 

The results obtained on the region W 1 are consistent with those of 
Luna & Sokoloski ( 2007 ). These are known features, arising in inner 
accretion disc perhaps, and their detection here is a confirmation that 
the method is working. 

To gain a better understanding of the nature of the deviation from 
the background model detected on region W 2 , we rely on the so- 
called Comparison Density plot or CD-plot (e.g. Algeri & Zhang 
2021 ) shown in Fig. 3 . The CD-plot allows us to visualize where 
the data distribution deviates significantly from the hypothesized 
distribution (in our case, the re-calibrated background density). It 
displays the estimated comparison density (dark green solid line) 

and which, for region W 2 specifies as 
̂ d (u ; ̂ B W 2 , F 2 ) = 0 . 9500 + 2 . 1577 u − 5 . 2749 u 2 + 2 . 9179 u 3 , (19) 

where u = ̂ B W 2 ( x). Whereas, the green bands are the standard errors 
of ̂ d ( ̂ B W 2 ( x); ̂ B W 2 , F 2 ) obtained by simulating from the estimator 
in ( 19 ) as described in Algeri & Zhang ( 2021 ). The grey bands 
correspond to the 99 % confidence bands under the null hypothesis 
of background only. If the estimated comparison density is within 
the confidence bands, o v er the entire range considered, we conclude 
that there is no significant departure from the background model. 
Conv ersely, we e xpect significant deviations to occur in regions 
where the estimate lies outside the confidence bands. It is worth 
emphasising that the CD-plot provides us a representation of the 
data in the quantile domain; that is, it displays the transformed data 
u i = ̂ B W 2 ( x i ), i = 1, . . . , 3311, and their estimated density. Such 
representation ensures that the most substantial departures of the 
data distribution from the expected model are magnified and those 
due to random fluctuations are smoothed out. More details on the 
construction and discussion of the CD-plot can be found in Algeri & 
Zhang ( 2021 , Algorithm 1) and Algeri ( 2020 , Section V A). 

For the specific case of Region W 2 , the CD-plot in Fig. 3 suggests 
that significant departures from ̂ b W 2 occur within the range of x ∈ 
[6.1, 7.9] Å. This detection, ho we ver, cannot be attributed to any 
known spectral features, and it corresponds to the signature of the 
Chandra optics Iridium absorption edge and is detectable because we 
are not assuming a particular spectral model here. It is worth pointing 
out that the departure below one at x ! 9.1 Å is due to the fact that, 

Table 5. Summary of our signal detection results for each region of interest using smooth tests. The second column 
shows the number, m , of coefficients selected out of M = 10, for each of the nine regions considered. The p-values 
adjusted for post-selection using the Bonferroni, K , and naive corrections and corrected for multiple hypothesis testing 
via Sidak (see 18 ) are given in the third, fourth and fifth columns, respectively. 
Regions m Bonferroni K Naive 
of interest ( W r ) (Sidak) (Sidak) (Sidak) 
W 1 3 0.0001 (0.0011) 0.0071 (0.0397) 0.0045 (0.0621) 
W 2 3 1.0816e-18 

(1.0817e-17) 2.7907e-15 
(2.9976e-14) 3.3306e-15 

(2.4980e-14) 
W 3 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 4 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 5 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 6 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 7 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 8 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
W 9 0 1.0000 (1.0000) 1.0000 (1.0000) 1.0000 (1.0000) 
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Table 6. Local p-values and adequate multiple hypothesis testing adjust- 
ments when testing for spectral lines via LRTs. 
Regions Local Sidak’s 
of interest ( W r ) p-values correction 
W 3 0.4810 0.9899 
W 4 0.1143 0.5724 
W 5 0.3247 0.9359 
W 6 0.0385 0.2402 
W 7 0.2612 0.8799 
W 8 0.5000 0.9922 
W 9 0.5000 0.9922 
Table 7. 50% and 90% upper limits on different regions using the LRT, 
with and without Sidak’s correction. The 50% upper limits are calculated by 
the proportion of the expected lines η to achieve the power 0.5 (solid line in 
Fig. 4 ) times the sample sizes n r . Similarly, the 90% upper limits are calculated 
by the proportion of the expected lines η to achieve the power 0.9 times the 
sample sizes n r . 
Regions ( W r ) 50% upper limits via LRT 90% upper limits via LRT 

Local Sidak adjusted Local Sidak adjusted 
W 3 29.93 39.42 48.91 53.29 
W 4 20.00 26.43 32.36 39.52 
W 5 24.02 30.14 35.32 43.80 
W 6 22.62 28.08 34.71 39.39 
W 7 17.90 24.17 29.71 35.98 
W 8 17.84 24.80 30.30 36.25 
W 9 37.83 21.87 63.57 76.83 

The probabilities of type I error for each of the procedures 
considered (obtained by setting ηr = 0) are reported in Tables D1 –
D2 . The simulated type I error using Bonferroni adjustment for 
the deviance statistic often exceeds the significance level of 0.05 
in the context of local analysis. It also exceeds the significance level 
αr = 0.0073 in the global analysis; that is when setting the probability 
of false disco v ery across all the sev en re gions to be α = 0.05. 
Conversely, the K -statistic and the naive post-selection adjustment 
for the deviance perform well in controlling the specified significance 
le vel e ven though the naive adjustment appears to be excessively 
conserv ati ve (the respecti ve probability of type I error is al w ays zero 
in the global analysis). This is reflected also in the power curves 
reported in Fig. 4 . The naive approach is the most conservative 
among the three, whereas Bonferroni exhibits the highest power. 

Finally, upper limits are constructed by inverting the power curves 
of the LRT at 50% and 90 % and multiplying the resulting ηr value 
for the sample size, n r (see Table 1 ) of the disco v ery re gion W r , 
for r = 3, . . . , 9. The results are summarized in T able 7 . W e can 
interpret the Sidak adjusted upper limits as the number of samples 
from the expected signal needed to achieve the specified power when 
testing simultaneously regions W 3 –W 9 . For example, for region W 3 , 
our 50 % upper limit computed using the LRT after Sidak correction 
is 40 (39.42). This tells us that if a spectral line at position 12.131 Å
was present, we would need 40 events in this location (out of the 730 
observed in the entire W 3 region) to be able to detect such spectral line 
with power 50%, while simultaneously looking for spectral lines in 
the regions W 4 , . . . , W 9 . Whereas, if we were interested in designing 
a future observation targeting solely region W 3 , our 50 % upper limit 
computed using the (local) LRT is 30 (29.93). This tells us that if 
a spectral line at position 12.131 Å was present, we would need 30 
events at such location to detect it with power 50%, and assuming 
that no other test on other regions is conducted at the same time. 

Similar interpretations can be given to the 90 % upper limits and for 
other regions. 

For the sake of comparison, the upper limits obtained by means of 
smooth tests are reported in Tables D3 –D4 . Not surprisingly, since 
smooth tests do not rely on the specification of a model for the signal, 
they are more conserv ati ve than the LRT. For example, for region W 3 , 
the 50 % upper limits computed using the Bonferroni, K -statistic, and 
the naive methods, and adjusted via Sidak for multiple hypothesis 
testing lead to 53, 64, and 68 events, respectively. 
5  DISCUSSION  
5.1 Advantages and limitations 
We hav e dev eloped a no v el method to detect weak signals 
distinct from a smooth background in high-resolution photon 
counting spectra. This approach anticipates difficulties likely to be 
encountered in the coming era of calorimeter spectra. The method 
is implemented to work with unbinned photon lists that allows the 
full available spectral resolution to be used, though a modification 
to use binned spectra is viable from an algorithmic perspective and 
it is the subject of future work. 

The statistical methodology presented here is particularly advanta- 
geous at high resolution because a precise specification of the source 
model spectrum is often not possible as the information available 
in the data usually exceeds that in the models proposed. Here we 
show that one can indeed exploit this phenomenon by modelling and 
estimating the ‘gap’ between the (potentially misspecified) model 
available and the true spectrum using smooth functions like shifted 
Legendre polynomials. On this note, it is worth emphasizing that, 
as pro v en in Algeri ( 2020 ), the closer the postulated model is to the 
truth, the more accurate (less biased) is the estimate of the latter. It 
follows that, in principle, one could a v oid specifying a model for 
the spectrum and estimate it by means of smooth functions. None 
the less, if a model is av ailable (e ven if misspecified), it should be 
used in order to reduce the gap between the proposed model and the 
truth. 

The implementation currently ignores spectral calibration prod- 
ucts like the ef fecti ve area and the redistribution matrices, and 
therefore cannot be applied to CCD resolution spectra. Furthermore, 
the method relies on a comparison between the smooth model de- 
scription of the source-free background and the source + background 
data sets, so it cannot be applied to cases where the background is 
contaminated by the source or where the background is not smoothly 
varying. 
5.2 Inferences based on RT Cru analysis 
5.2.1 Domain of applicability 
We first note that our method easily detects the presence of significant 
source emission in passband W 1 . This is not surprising, as these lines 
have been identified and analysed by several studies (e.g. Luna & 
Sokoloski ( 2007 ) resolved it clearly in HETGS + ACIS-S spectra; 
and Danehkar et al. ( 2021 ) successfully modelled the triplet in the 
same data set that we use). The chance that a random fluctuation can 
produce a detectable departure from the background is assessed as p 
! 10 −2 after accounting for multiple hypothesis tests (see Table 5 ). 
This serves as a validation of the method, in that a line complex 
known to exist is correctly found. 

An important characteristic of our method is that it is not limited to 
narrow lines. If the source spectrum has a different shape compared 
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Table 6. Local p-values and adequate multiple hypothesis testing adjust- 
ments when testing for spectral lines via LRTs. 
Regions Local Sidak’s 
of interest ( W r ) p-values correction 
W 3 0.4810 0.9899 
W 4 0.1143 0.5724 
W 5 0.3247 0.9359 
W 6 0.0385 0.2402 
W 7 0.2612 0.8799 
W 8 0.5000 0.9922 
W 9 0.5000 0.9922 
Table 7. 50% and 90% upper limits on different regions using the LRT, 
with and without Sidak’s correction. The 50% upper limits are calculated by 
the proportion of the expected lines η to achieve the power 0.5 (solid line in 
Fig. 4 ) times the sample sizes n r . Similarly, the 90% upper limits are calculated 
by the proportion of the expected lines η to achieve the power 0.9 times the 
sample sizes n r . 
Regions ( W r ) 50% upper limits via LRT 90% upper limits via LRT 

Local Sidak adjusted Local Sidak adjusted 
W 3 29.93 39.42 48.91 53.29 
W 4 20.00 26.43 32.36 39.52 
W 5 24.02 30.14 35.32 43.80 
W 6 22.62 28.08 34.71 39.39 
W 7 17.90 24.17 29.71 35.98 
W 8 17.84 24.80 30.30 36.25 
W 9 37.83 21.87 63.57 76.83 

The probabilities of type I error for each of the procedures 
considered (obtained by setting ηr = 0) are reported in Tables D1 –
D2 . The simulated type I error using Bonferroni adjustment for 
the deviance statistic often exceeds the significance level of 0.05 
in the context of local analysis. It also exceeds the significance level 
αr = 0.0073 in the global analysis; that is when setting the probability 
of false disco v ery across all the sev en re gions to be α = 0.05. 
Conversely, the K -statistic and the naive post-selection adjustment 
for the deviance perform well in controlling the specified significance 
le vel e ven though the naive adjustment appears to be excessively 
conserv ati ve (the respecti ve probability of type I error is al w ays zero 
in the global analysis). This is reflected also in the power curves 
reported in Fig. 4 . The naive approach is the most conservative 
among the three, whereas Bonferroni exhibits the highest power. 

Finally, upper limits are constructed by inverting the power curves 
of the LRT at 50% and 90 % and multiplying the resulting ηr value 
for the sample size, n r (see Table 1 ) of the disco v ery re gion W r , 
for r = 3, . . . , 9. The results are summarized in T able 7 . W e can 
interpret the Sidak adjusted upper limits as the number of samples 
from the expected signal needed to achieve the specified power when 
testing simultaneously regions W 3 –W 9 . For example, for region W 3 , 
our 50 % upper limit computed using the LRT after Sidak correction 
is 40 (39.42). This tells us that if a spectral line at position 12.131 Å
was present, we would need 40 events in this location (out of the 730 
observed in the entire W 3 region) to be able to detect such spectral line 
with power 50%, while simultaneously looking for spectral lines in 
the regions W 4 , . . . , W 9 . Whereas, if we were interested in designing 
a future observation targeting solely region W 3 , our 50 % upper limit 
computed using the (local) LRT is 30 (29.93). This tells us that if 
a spectral line at position 12.131 Å was present, we would need 30 
events at such location to detect it with power 50%, and assuming 
that no other test on other regions is conducted at the same time. 

Similar interpretations can be given to the 90 % upper limits and for 
other regions. 

For the sake of comparison, the upper limits obtained by means of 
smooth tests are reported in Tables D3 –D4 . Not surprisingly, since 
smooth tests do not rely on the specification of a model for the signal, 
they are more conserv ati ve than the LRT. For example, for region W 3 , 
the 50 % upper limits computed using the Bonferroni, K -statistic, and 
the naive methods, and adjusted via Sidak for multiple hypothesis 
testing lead to 53, 64, and 68 events, respectively. 
5  DISCU SSION  
5.1 Advantages and limitations 
We hav e dev eloped a no v el method to detect weak signals 
distinct from a smooth background in high-resolution photon 
counting spectra. This approach anticipates difficulties likely to be 
encountered in the coming era of calorimeter spectra. The method 
is implemented to work with unbinned photon lists that allows the 
full available spectral resolution to be used, though a modification 
to use binned spectra is viable from an algorithmic perspective and 
it is the subject of future work. 

The statistical methodology presented here is particularly advanta- 
geous at high resolution because a precise specification of the source 
model spectrum is often not possible as the information available 
in the data usually exceeds that in the models proposed. Here we 
show that one can indeed exploit this phenomenon by modelling and 
estimating the ‘gap’ between the (potentially misspecified) model 
available and the true spectrum using smooth functions like shifted 
Legendre polynomials. On this note, it is worth emphasizing that, 
as pro v en in Algeri ( 2020 ), the closer the postulated model is to the 
truth, the more accurate (less biased) is the estimate of the latter. It 
follows that, in principle, one could a v oid specifying a model for 
the spectrum and estimate it by means of smooth functions. None 
the less, if a model is av ailable (e ven if misspecified), it should be 
used in order to reduce the gap between the proposed model and the 
truth. 

The implementation currently ignores spectral calibration prod- 
ucts like the ef fecti ve area and the redistribution matrices, and 
therefore cannot be applied to CCD resolution spectra. Furthermore, 
the method relies on a comparison between the smooth model de- 
scription of the source-free background and the source + background 
data sets, so it cannot be applied to cases where the background is 
contaminated by the source or where the background is not smoothly 
varying. 
5.2 Inferences based on RT Cru analysis 
5.2.1 Domain of applicability 
We first note that our method easily detects the presence of significant 
source emission in passband W 1 . This is not surprising, as these lines 
have been identified and analysed by several studies (e.g. Luna & 
Sokoloski ( 2007 ) resolved it clearly in HETGS + ACIS-S spectra; 
and Danehkar et al. ( 2021 ) successfully modelled the triplet in the 
same data set that we use). The chance that a random fluctuation can 
produce a detectable departure from the background is assessed as p 
! 10 −2 after accounting for multiple hypothesis tests (see Table 5 ). 
This serves as a validation of the method, in that a line complex 
known to exist is correctly found. 

An important characteristic of our method is that it is not limited to 
narrow lines. If the source spectrum has a different shape compared 
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II. DISAMBIGUATE OVERLAP OF UV CET A & B

ObsID 1880

HRC-S/LETG UV Cet AB ≡ GJ 65 AB

Flaring active dM binary
M5.5V+M6V
≈2.7 pc

Observed for 75 ks in 
Nov 2001 with HRC-S/
LETG

Massive >100× flare on 
UV Cet B



II. EBASCS ON 0TH ORDER6170 A. D. Meyer et al.

Figure 7. Left-hand panel: Light curves for UV Cet A, UV Cet B, and the background obtained from an single Monte Carlo iteration of the space+time
algorithm. There is moderate contamination from the UV Cet B’s flare (at around 53ks) on the background. This contamination is less severe than with the
spatial algorithm; space+time allocated 84 events to the background at the time of the UV Cet B flare, while spatial allocated 106 events to the
background. (Such contamination is also a consequence of the approximate nature of our PSF model.) Right-hand panel: Arrival times of events disputed by the
spatial and space+time algorithms. The orange bars indicate events that are moved from UV Cet B to UV Cet A, and green bars indicate events that are
moved from UV Cet A to UV Cet B by the space+time model. Events allocated to the same source by both algorithms are not included in the plot. Notice
that space+time is successful in identifying the contamination in UV Cet A due to the large flare of UV Cet B and allocating those events to UV Cet B.

Table 6. Disagreement matrix between the allocations made
by the space+time and spatial algorithms. Columns
correspond to the allocations made by spatial and rows
correspond to allocations made by space+time. For exam-
ple, 149 events that were attributed to UV Cet A by spatial
were instead allocated to UV Cet B by space+time.

UV Cet B UV Cet A Background

UV Cet B 8388 149 28
UV Cet A 107 3560 19
Background 23 5 381

six time bins. (Only error bars for λ1,4 and λ2,4 show a substantial
overlap.) The right-hand panel of Fig. 8 illustrates the difference in
the separated light curves; HBC 515 Aa is stable for the first 15ks
and then starts dimming, whereas HBC 515 Ab has a u-shaped light
curve.

To further investigate spectral differences between the sources, we
analyse variations in their hardness ratios, shown in Fig. 10. First,
we sampled 500 allocations of the recorded events to HBC 515 Aa
and HBC 515 Ab from the posterior distribution of s (i.e. the
latent variable encoding the origin of the observed events, see
Section 2.2) under eBASCS. Then, for each allocation, we computed
the spectral hardness of the separated sources in the soft (S:0.3–
0.9 keV), medium (M:0.9–2 keV), and hard (H:2-8 keV) bands,
in each of 30 time intervals of length 1 ks. This yields, for each
separated source at each time interval, the posterior distribution
of spectral hardness in the top (log S

M
) and bottom (log M

H
) panels

of Fig. 10. Fig. 10 shows that both sources exhibit variations in
their spectra over the observation period. eBASCS is able to iden-
tify time-scales over which HBC 515 Aa and HBC 515 Ab exhibit
differences in their hardness ratios (see caption of Fig. 10 for
details).

7 SU M M A RY

We have presented eBASCS, an extension to the BASCS method
developed by Jones et al. (2015) to leverage temporal variability
signatures in high-energy astronomical sources with overlapping
PSFs to perform a better separation of the photon events. The method
integrates the temporal information into the disentangling algorithm
via a flexible model that allows us to extract discriminatory features
from the observed data. The assumption of independence of the
brightness across time bins allows the model to flexibly capture
temporal variability.

Several enhancements to eBASCS are in progress. We plan
to enhance the scalability of the method, while maintaining its
current flexibility, by modelling the temporal information with simple
continuous-time processes; incorporate instrument sensitivity and
model the spectra using physically meaningful models for the source
spectra; explore extensions of our spectral modelling to grating
data (e.g. to separate photons in overlapping lines in the Chandra
LETGS+HRC-S UV Cet observation); apply our methodology to
astronomical systems that exhibit higher contrast in the relative
intensities of their components (e.g. weak jets of X-ray bright
quasars); explore observations from instruments with lower spatial
resolution (such as NuSTAR) to investigate whether eBASCS is able
to separate spatially unresolved sources on the basis of their spectral
and temporal variations; and finally, extend the method to allow the
number of sources in the model to be estimated by carrying out both
model comparisons for different assumed numbers of sources [e.g.
using AIC (Akaike 1974) or BIC (Schwarz 1978)] as well as using
a more sophisticated Reversible Jump MCMC method (Green 1995;
Jones et al. 2015).

Simulation studies show that eBASCS achieves more accurate
separation of photons from overlapping sources than either BASCS
or the baseline spatial method. In particular, the proposed
method further removes the contamination at the sources’ cores and

MNRAS 506, 6160–6180 (2021)
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LXpeak ≈ 2⋅1029 erg s−1 ≈ X1000


LXmin ≈ 1027 erg s−1 ≈200× increase

(Audard et al. 2003)

Meyer et al. 2023

EBASCS (Jones et al. 2015, Meyer et al. 2023) 

works on photon events lists

{x,y,t,E} (whichever is available)


Finite Mixture model where each event is 
assumed to arise from one of several sources 
with the mixture weights representing 
proportion of photons from that source.


Each event is assigned a probability of 
belonging to each source and sifted, and the 
the sources are probabilistically separated.
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LXpeak ≈ 2⋅1029 erg s−1 ≈ X1000


LXmin ≈ 1027 erg s−1 ≈200× increase

(Audard et al. 2003)
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EBASCS (Jones et al. 2015, Meyer et al. 2023) 

works on photon events lists

{x,y,t,E} (whichever is available)


Finite Mixture model where each event is 
assumed to arise from one of several sources 
with the mixture weights representing 
proportion of photons from that source.


Each event is assigned a probability of 
belonging to each source and sifted, and the 
the sources are probabilistically separated.
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Model the OVII triplet

Propagate the relative 
positions of A & B from 
0th order to expected 
locations of dispersed 
O VII triplet

Fit weights relative to 
O VIIr B



II. EBASCS ON DISPERSED OVII TRIPLET

Applying probabilistic disentanglement of photons in

dispersed grating images of spectral lines

Antoine D. Meyer1, David A. van Dyk1, Vinay Kashyap2

1Statistics Section, Department of Mathematics, Imperial College London.
2Center for Astrophysics | Harvard & Smithsonian

1. The science problem

We want to estimate plasma characteristics (temperature, density)

in individual X-ray sources that appear in a multiple system.

I Can be done through analysis of the dispersed grating images
I Spectral line ratios correlate with specific plasma features
I Need to estimate relative intensity (or count) of sources in dispersed spectra

PROBLEM: The sources have overlapping Point Spread Functions (PSFs).
I There is also overlap in multiple lines (e.g. OVII line triplet).
I Need to disentangle photons from the overlapping dispersed images for

meaningful plasma estimates.

We apply eBASCS Meyer et al. (2021, MNRAS), a Bayesian

method designed to sift high-energy photon events from multiple

sources with overlapping point spread functions.

We study UV Ceti (Gliese 65), an M dwarf hierarchical binary system.
I Components UV Cet A and B are flare stars
I We studied the 0th order image in Meyer et al. (2021, MNRAS)

2. The statistical method: eBASCS Meyer et al. (2021, MNRAS)

Data Event list e = {ei}n
i=1 = {xi , yi , ti}n

i=1
I detector spatial coordinates xi and yi
I photon arrival time ti

Finite Mixture Model Each event is assumed to originate from one of S
sources or the background.
I The sources are modelled by parametric distributions hj(�), j = 0, . . . , S
I The mixture weights w = (w0, . . . , wS), represent the proportion of the

events originating from source j .

The likelihood of the data e is therefore

p(ei|�, w) =
SX

j=0
wjhj(ei|�)

Spatial and Temporal models for the sources

I Spatial model: (xi , yi) | si = j ≥ PSF
centred at unknown location of source j ,
denoted µj, evaluated at (xi , yi).

I Temporal model: piece-wise constant
function on a pre-selected collection of
time bins

3. Bayesian Inference

We operate under the Bayesian paradigm, and derive the posterior distribution
of the model parameters given observed data:

p(�|e) = p(e|�)p(�)
p(e)

I We generate a sample of the joint posterior distribution of the model
parameters with Markov Chain Monte Carlo (MCMC)

4. Numerical Results: Analysis of the OVII triplet in UV Ceti

We want to estimate plasma characteristics in UV Cet A and B. One
way to proceed is by analyzing that OVII triplet line, since for example:
I The ratio of the OVII intercombination line to the OVII forbidden line is a

sensitive diagnostic of the plasma density.

The (posterior distribution) of the ratio of OVIIi to OVIIf say, in UV Cet B
(sources 1, 2 and 3 in the figure), can be estimated as follows:
I Run eBASCS on the OVII triplet data
I This produces a Monte-Carlo sample of the posterior distribution of source

intensities (w1, . . . , w6).
I The ratio in UV Cet B can be computed as w2/w3 and in UV Cet A as w5/w6.

The temporal dependency of eBASCS allows us to study how the

derived plasma characteristics change during the flare in UV Cet B

5. References and Further Reading

I "eBASCS: Disentangling overlapping astronomical sources II, using spatial, spectral, and
temporal information", Meyer et al. (2021)

I Other work: "TD-CARMA: Painless, Accurate, and Scalable Estimates of Gravitational Lens
Time Delays with Flexible CARMA Processes", Meyer et al. (2023)

Change of ≈5× in OVII i/f ratio
⇒ ≈10× increase in ne 
⇒ ≈100× increase in LX

almost entirely attributable to density increase



SUMMARY
I. Weak lines in high background

New method to discern deviations in background model and detect presence of weak source features, 
accounting for multiple tests

Applied to look for soft lines in RT Cru — none of the usual suspects are detectable with current 
instrumentation, set upper limits on line fluxes

What is that line at 16.93 Å?

II. Disentangling overlapping lines from contaminating companions

Probabilistically sift photons in overlapping sources using spatial, spectral, and temporal differences

Applied to UV Cet O VII density sensitive lines, demonstrates rapid increase of density during flare 

Developed for grating spectroscopy, will also work for calorimeter detectors
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Model the OVII triplet

Propagate the relative 
positions of A & B from 
0th order to expected 
locations of dispersed 
O VII triplet

Fit weights relative to 
O VIIr B

–



[DIGRESSION] UPPER LIMITS: A RANT
1. An Upper Limit is not the upper bound of the uncertainty interval of a flux estimate

a. An uncertainty interval is not unique — a 68% uncertainty interval on flux can be anything 
between [0,q68] to [q32,∞], even [q16,q84]

2. An upper limit is how bright a source could be before it will be definitely detected, or how 
faint should it be for it to be definitely not detected (Kashyap et al. 2010, ApJ 719, 900)

3. You set an upper limit based on the process of detection, not based on how many counts are 
observed for the source, because then you have an estimate of the flux

4. It requires a measure of the False Negative, or Statistical Power

5. See (1)




