Characterizing Interstellar Dust with Chandra in the Next Decade

Sascha Zeegers & Elisa Costantini Cor de Vries, Xander Tiel

Netherlands Institute for Space Research www.sron.n

Sterrewacht Leiden

The life cycle of dust in the universe

Dust has an important role in the processes that drive the evolution of the Interstellar Medium (ISM)

What kind of dust do we find in the ISM?

What is the chemical composition of interstellar dust in the ISM?

Major dust forming elements are: C,N,O, Mg, Si and Fe (and possibly S)

Silicates

- Hydrogenated Amorphous Carbon
- Interstellar ices (CO, H₂O, NH₃, CH₄, CO₂ etc.)
- Graphite
- Sulfide minerals: FeS, FeS₂, MnS (?)

Silicate dust grain

Observing Dust

Dust has been extensively studied between wavelength ranges: radio to far UV

Open questions:

- Chemical composition of dust unclear: Where is the iron? 90% depleted! Might be in silicates. Also large uncertainties for: O, S, and C
- Structure of dust: How is dust produced and destroyed? What is the ratio of amorphous and crystalline dust?

X-rays can provide an answer!

 X-rays are sensitive to a wide range of column densities; makes it possible to analyze dust content in various regions

 X-rays are sensitive to a wide range of column densities; makes it possible to analyze dust content in various regions
Depending on the environment we can observe different edg

Diffuse regions: O and Fe $N_H \sim 2x10^{21} \text{cm}^{-2}$

Dense regions: Si, Mg, S, F $N_H \sim 2.5 \times 10^{22} \text{ cm}^{-2}$

- X-rays are sensitive to a wide range of column densities; makes it possible to analyze dust content in various regions
- Measuring non blended absorption features in the soft X-rays of O, Mg, Si and Fe

- X-rays are sensitive to a wide range of column densities; makes it possible to analyze dust content in various regions
- Measuring non blended absorption features in the soft X-rays of O, Mg, Si and Fe
- Absorption of both gas and dust can be measured simultaneously

structures (XAFS) to characterize

Modified from Fundamentals of XAFS by Mathew Newville

Models: Filling the gaps

Few lab measurements available of X-ray edges interesting for astronomy We need to expand the databas

The DUSTLAB project: (Costantini, De Vries 2013)

- Collect relevant dust samples (e.g. silicates and sulfates)
- Measure relevant edges (O, Fe, Mg, Si, S)
- Implement into fitting X-ray

Laboratory data

ALBA

LUCIA Mg K at 1.3 keV Si K at 1.84 keV

DUBBLE Fe K at 7.11 keV

Electron Microscope Utrecht (EMU), Madrid (TEM) O K at 0.543 keV Fe L at 0.7 keV

AMOND SOLEIL BSS ESR ELETTRA

Absorption profiles: Si K-edge

Sample

1. Olivine $(Mg_{1.56}Fe_{0.4}Si_{0.91}O_4)$ 2. Pyroxene (amorphous) (Mg_0, Fe_0, SiO_3) 3. Pyroxene (Mg_{0.9}Fe_{0.1} SiO₃ 4. Enstatite $(MgSiO_3)$ 5. Pyroxene (amorphous) (Mg _{0.6}Fe _{0.4}SiO₃) 6. Pyroxene $(Mg_{0.6}Fe_{0.4}SiO_3)$ 7. Hyperstene $(Mg_{1.502}Fe_{0.498}Si_2O_6)$

Absorption profiles: Si K-edge

Sample

1. Olivine $(Mg_{1.56}Fe_{0.4}Si_{0.91}O_4)$ 2. Pyroxene (amorphous) (Mg_0, Fe_0, SiO_3) 3. Pyroxene (Mg_{0.9}Fe_{0.1} SiO₃ 4. Enstatite $(MgSiO_3)$ 5. Pyroxene (amorphous) (Mg 0.6 Fe 0.4 SiO3) 6. Pyroxene (Mg _{0.6}Fe _{0.4}SiO₃) 7. Hyperstene $(Mg_{1.502}Fe_{0.498}Si_2O_6)$

X-rays

Lee 05,09 Costantini 12, pinto 10,13

crystalline vs amorphous dust

Sharp XAFS features indicate crystalline dust

We find >70% of crystalline dust

- Special environment with freshly produced dust?
- Do we understand the dust structure?

Scattering feature

Large particles along the line of sight?

spectra other X-ray binaries

Different sight lines, changes in the composition of the Interstellar Dust?

Schulz et al. 2016^{kev} 2.0 2.2 Zeegers, Costantini in

The Next Decade...

Chandra has a huge potential in solving the major open question about interstellar dust.

New lab measurements of the X-ray edges will play an essential part!