Soft and Hard X-rays from YOUNG Stellar Explosions

Raffaella Margutti

Dan Milisavljevic, Jerod Parrent, Atish Kamble, Wen-Fai Fong, Ryan Chornock, Ashley Zauderer

"We always find something, eh Didi, to give us the impression We exist?" S. Beckett

Envelope-Stripped SNe

Deepest Limits to Type Ia SNe Margutti et al., 2014ApJ...790...52M Margutti et al., 2012ApJ...751..134M

First solid detection of X-rays from a SuperLuminous SN Chandra is observing right now!!! Margutti et al., in prep

The weakest Engine-driven SNe Margutti et al., 2014ApJ...797..107M Margutti et al., 2013ApJ...778...18M

Massive Envelope Ejection timed with Core-Collapse (The SN chameleon 2014C) Margutti et al., ApJ Submitted, 2016arXiv160106806M Milisavljevic, Margutti et al., 2015ApJ...815..120M

Energy partitioning

Margutti +13, +14, +15, +16; Kamble +13

Energy partitioning

Margutti +13, +14, +15, +16; Kamble +13

...BUT...

The BIG questions

(current Areas of Ignorance)

- Stellar Progenitors and their pre-explosion structure
- Mass Loss
- Explosion Mechanism7
 Source of Energy \

Wolf-Rayet

SN Explosion

SN Explosion

Vshock~ (10-500) Vejection

Core-Collapse SN

Type I H-poor

SN2014C

Type I H-poor

Type II H-rich

Margutti et al., 2016, Submitted, arXiv: 1601.06806

SN2014C: a normal Ib SN

Milisavljevic, RM+15

SN2014C-Optical

Halpha

Development of H-features with time

Chandra

RM+16

NuSTAR (3-80 keV)

T~20 keV

NH~4d22 cm-2

RM+16

Direct Constraints on the shock dynamics!

Density

Type I

Density

High-density H-rich medium

Type II

H-poor medium

Type I

High-density H-rich medium

H-poor medium

 \rightarrow Type II

Density

R~ 5 10¹⁶ cm

H-poor medium

Density

High-density H-rich medium

~ 1 M_O

Ejected ~20-2000 yrs before explosion

Why so important?

Mass - Loss

Stellar Structure at Collapse

Stage	Timescale
H burning	7 million years
He Burning	0.5 million years
C Burning	600 years
Ne Burning	1 year
O Burning	6 months
Si Burning	1 day

Ne

"Explodability" of a Star

Why so important?

Mass - Loss

Chemical (Enrichment of the Universe

Stellar Structure at Collapse Impact our understanding of the **Star Formation History** of the Universe.

"Explodability" of a Star

Supergiant

Wolf-Rayet

SN Explosion

MASS LOSS- Massive Stars

The KNOWLE

DGE

All H-stripped CC-SNe d<40 Mpc —> 300 ks/yr

Galactic SN remnants (asymmetries, shocks, progenitors)

(Energy source, Explosion

mechanism, progenitor

properties)

Radio/X-ray/Gamma-ray (mass-loss)

Chandra, XMM, NuSTAR, Swift, VLA \rightarrow SKA

Shock Break out (progenitor)

Progenitor Detection

HST, \rightarrow EUCLID

Pre-explosion Imaging (direct mass-loss constraints)

Optical/UV/NIR Monitoring (ejecta composition, asymmetries, Etot)

100

1000

Stellar models (progenitor+ environment)

-100

000

Pan-STARRS1, PTF, ASASSN→LSST

-10 -1 1 10 Time since Explosion (yr)

Radio/X-ray/Gamma-ray (mass-loss) (Energy source, Explosion mechanism, progenitor properties)

1000

Chandra, XMM, NuSTAR, Swift, VLA → SKA

Progenitor Detection

HST, → EUCLID

Shock Break out

(progenitor)

Pre-explosion Imaging (direct mass-loss constraints)

Optical/UV/NIR Monitoring (ejecta composition, asymmetries, Etot)

100

Stellar models (progenitor+ environment)

-100

000

Pan-STARRS1, PTF, ASASSN→LSST

-10 -1 1 10 Time since Explosion (yr)

Mass-loss in evolved massive stars is one of the least understood aspects of stellar evolution, it is relevant to a number of different areas of Astrophysics, it deserves further attention.

Thanks to Chandra, XMM, Swift, NuSTAR for your generous support to our investigation

 $\therefore Ine END$

is where we start from ... "

The Little Gidding by T.S. Eliot

Thanks to Chandra, XMM, Swift, NuSTAR for your generous support to our investigation

Back up

Super-Luminous X-rays are not for everybody...

SN2008D/XRF080109 Serendipitous Detection by Swift/XRT

Lpeak=6d43 erg/s

Binary Evolution Burning Instabilities

Non thermal Radio emission Ibc

Binary Population Synthesis S. de Mink, M. Zapartas

~6.5% [3.5-10%] of lb/c progenitors go through CE evolution within ~ few 1000 yr before collapse

Non thermal Radio emission Ibc

Margutti et al., in prep

The PROBLEM

Progenitor System

Type Ia[']SN explosion

"...The end is where we start from..."

The Little Gidding by T. S. Eliot

Type Ia SN2014J Host Galaxy: M82, D=3.5 Mpc

Chandra X-ray images

Thanks to the Chandra Team!!

