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Arcus will be able to detect potential turbulent broadening of
the O VIl line in the post-shock plasma from an accretion shock
impacting onto a young star. Figure adapted from Brickhouse
et al (2010), © AAS. Reproduced with permission.

Wavelength (Angstroms)

Simulated Arcus O VIl region of Capella overlaid on the Chandra/HETG
spectrum. DR satellite lines of O VIIl marked (DR) are identified using the
AtomDB v3.0 spectral database. A 5-ks Arcus simulation will have high
enough S/N to identify these lines, enabling longer observations to
capture their changes in the dynamic environment of the stellar corona.

Arcus can study the density and extent of high-altitude atmospheric layers of exoplanets in
close orbits by using energy-resolved transit observations sensitive to different elements.
Soft X-ray photons are absorbed by low column densities in the atmosphere, causing deep

transit light curves, while harder X-rays probe yet deeper layers.

* Will also be the first mission able to directly
measure the density and infer the
composition of the high-altitude outer layers
of exoplanet atmospheres.



