EVOLUTION OF THE COOLING-FEEDBACK CYCLE IN BRIGHTEST CLUSTER GALAXIES

Michael Calzadilla

NASA Hubble Fellow Center for Astrophysics | Harvard & Smithsonian 25 Years of Chandra Symposium

CENTER FOR ASTROPHYSICS HARVARD & SMITHSONIAN

THE BARYON CYCLE, FEEDBACK, AND GALAXY EVOLUTION

Tumlinson+17

Silk & Mamon+12

GALAXY CLUSTERS

- Largest objects in Universe™
- 10s 100s of galaxies, often dominated by a brightest cluster galaxy (BCG)
- $\,\circ\,\,{\sim}10^{14}\,{-}\,10^{15}\,M_{\odot}$

GALAXY CLUSTERS

- Largest objects in Universe™
- 10s 100s of galaxies, often dominated by a brightest cluster galaxy (BCG)
- $\,\circ\,$ ~10^{14} 10^{15} $\,M_{\odot}$
- Hot (10⁷ K) intracluster medium (ICM) makes up most (>90%) of the luminous matter
 - \circ Inner ICM = CGM of BCG
- Gives off X-rays via radiative cooling (e.g. Bremsstrahlung)

THE COOLING FLOW PROBLEM

X-ray flux $\propto n_e^2 / \sqrt{T}$ \downarrow Cold and dense core \downarrow Expect high star formation rates (SFRs) in BCGs

THE COOLING FLOW PROBLEM

SOLUTION: AGN FEEDBACK AS A THERMOSTAT

Hlavacek-Larrondo+15

MULTIWAVELENGTH VIEW OF AGN FEEDBACK

EVOLUTION OF THE AGN FEEDBACK CYCLE

- Multi-wavelength observations of galaxy clusters best way to see entire baryon cycle in largest galaxies
- AGN feedback biggest driver of BCG evolution
- Some remaining questions:
 - How long has this balance been in place?
 - Have the conditions for triggering cooling and feedback evolved?
 - Has feedback's effectiveness changed with time?
- Only recently able to start addressing these thanks to SZ surveys

EVOLUTION OF THE AGN FEEDBACK CYCLE

- Multi-wavelength observations of galaxy clusters best way to see entire baryon cycle in largest galaxies
- AGN feedback biggest driver of BCG evolution
- Some remaining questions:
 - How long has this balance been in place?
 - Have the conditions for triggering cooling and feedback evolved?
 - Has feedback's effectiveness changed with time?
- Only recently able to start addressing these thanks to SZ surveys

ENTROPY THRESHOLD FOR TRIGGERING COOLING AND FEEDBACK

ENTROPY THRESHOLD FOR TRIGGERING COOLING AND FEEDBACK

ENTROPY THRESHOLD FOR TRIGGERING COOLING AND FEEDBACK

HAVE THE CONDITIONS FOR TRIGGERING COOLING AND FEEDBACK EVOLVED?

SOUTH POLE TELESCOPE

Sunyaev-Zel'dovich (SZ) EFFECT

SPT-Chandra BCG sample:

Unbiased sample of 95 clusters spanning 10 Gyr in evolution Multiwavelength followup: ~4 Ms Chandra (X-ray) ~30 nights optical spectroscopy

-- Full radio coverage

MULTIWAVELENGTH DATA

MULTIWAVELENGTH DATA

MULTIWAVELENGTH DATA

ICM "fuel" →-

Star formation

AGN activity

Look for detection of radio source

TRIGGER FOR STAR FORMATION PERSISTS FOR 10 GYR

TRIGGER FOR STAR FORMATION PERSISTS FOR 10 GYR

HAVE THE CONDITIONS FOR COOLING EVOLVED?

HAVE THE CONDITIONS FOR FEEDBACK EVOLVED?

COOLING-FEEDBACK CONNECTION AT HIGH-Z

- Not as tight in the past as it is today (Birzan+17)
- Conditions in the past:
 - Higher merger rate (e.g. Brodwin+13, Lotz+13)
 - Higher gas availability and SFRs (e.g. Madau & Dickinson 14)
 - Higher quasar fraction rather than radio mode AGN (Somboonpanyakul+22, Hlavacek-Larrondo+13)
- Case study: SpARCS 1049
 - $\circ~z=1.7,~M=3x10^{14}~M_{\odot}$
 - Massive starburst: ~860 M_{\odot} / yr (Webb+15a,b)
 - ICM and SF not centered on BCG \rightarrow no feedback (*Hlavacek-Larrondo*+20)

FUTURE WORK

Train on simulation \rightarrow apply to real SPT-3G sample Disentangle BCG growth and BH fueling mechanism from evolution

Steeper-than-unity slope out to high-z, but no significant evolution in average efficiency

michael.calzadilla@cfa.harvard.edu | Evolution of the AGN Feedback Cycle | 25 Years of Chandra Symposium

EVOLUTION OF AGN FEEDBACK CONDITIONS IN GALAXY CLUSTERS

(arXiv:2311.00396)

10 Billion Years Ago

5 Billion Years Ago

Today

- Clusters are a great way to see entire baryon cycle
- AGN feedback drives evolution of BCGs
- At low-z, feedback is triggered when ICM central entropy drops below a certain threshold
- Chandra synergy with Optical + SZ + Radio dataset:
 - Show for the first time that this entropy threshold for cooling persists out to z>1
 - No significant evolution in this threshold value
 - Entropy threshold for AGN activity disappears at higher-z
 - \rightarrow cooling-feedback connection wasn't as tight

Stay tuned for follow-up papers!

- Evolution of cooling/feedback efficiency
- Machine Learning Cluster Dynamical States
- BCG+AGN fuel supply transition from mergers to ICM cooling

BACKUP SLIDES

BARYON CYCLE

CONDITIONS FOR MULTIPHASE COOLING

No significant evolution in threshold value

Strong, long-lived connection between ICM cooling and SF

AGN FEEDBACK AS A FUNCTION OF REDSHIFT

- Was feedback more violent in the past?
- "Radio-mode" feedback has been operating for 9+ Gyr
- No significant evolution up to z~1.3

SED FITTING WITH PROSPECTOR

SED FITTING WITH PROSPECTOR

• Flux calibrate spectrum using calibrated photometry

• Fit with delayed-tau SFH plus additional SF burst

SATURATION POINT FOR AGN FEEDBACK?

Calzadilla+22

- Relaxing assumption of constant cooling efficiency:
- → Find steeper-than-unity relation b/w SFR and M_{cool}

 ○ Gradual *increase* in cooling efficiency ⇔ Gradual *decrease* in effectiveness of feedback

HAS THE EFFECTIVENESS OF FEEDBACK EVOLVED?

Calzadilla+22

Redshift dependence?

Need representative sample to assess

GRADUAL SATURATION OF AGN FEEDBACK

• SMBH growth rate proportional to cooling rate:

 $\frac{\dot{M}_{BH}}{\dot{M}_{Edd}} \propto \dot{M}_{cool}^{1.87}$

- Cap on LHS, but not RHS
- Halos can grow via mergers/accretion, resulting in undermassive SMBH
 - \rightarrow affects mode of AGN feedback

Large cluster/halo

Radio Mode Feedback

 $\dot{M}_{BH} \ll \dot{M}_{Edd}$ Feedback is jet dominated

More effective at suppressing cooling

Quasar Mode Feedback

 $\dot{M}_{BH} \gtrsim 0.1 \, \dot{M}_{Edd}$ Feedback is radiation dominated Not as effective at suppressing cooling

> . Й_{Edd}

. М_{ВН}

100%

<u>Takeaway</u>: Radiatively efficient, quasar mode systems allow for more efficient cooling of hot (10⁷ K) to warm (10⁴ K) gas

 \dot{M}_{Edd}

VS

100%

0% M_____

GRADUAL SATURATION OF AGN FEEDBACK

- Gradual transition from mechanical to radiative feedback at high \dot{M}/\dot{M}_{Edd}
 - Not as effective at offsetting cooling in clusters
- How then do you stop cooling?

Steeper-than-unity slope out to high-z, but no significant evolution in average efficiency

michael.calzadilla@cfa.harvard.edu | Evolution of the AGN Feedback Cycle | 25 Years of Chandra Symposium

MISSING HIGH POWER RADIO SOURCES

Only missing ~4% of high power sources expected from low-z

Radio bias to SZ signal:

$$\langle \delta \zeta / \zeta \rangle = -0.03 \left(\frac{\nu_{\mathrm{SZ}}}{1.4 \mathrm{~GHz}} \right)^{-\alpha_s} \left(\frac{S_{1.4}}{\mathrm{mJy}} \right) \left(\frac{M_{500}}{10^{14} M_{\odot}} \right)^{-1}$$

Radio Detection:

1

FUTURE DIRECTIONS

USING DENSITY RATHER THAN ENTROPY

USING [OII] TO MEASURE SFRS

- [OII] probes similar ionization energy to H α , which is ∝ UV
- All consistent with photoionization by young stars
- Spatially-resolved maps which allows us to avoid AGN contamination

