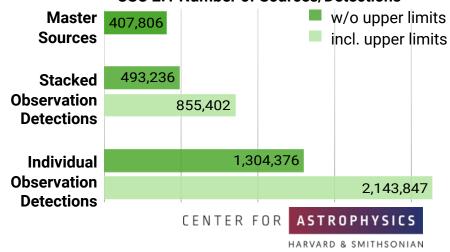


The Chandra Source Catalog Release 2.1: The Twenty-Two Year Catalog

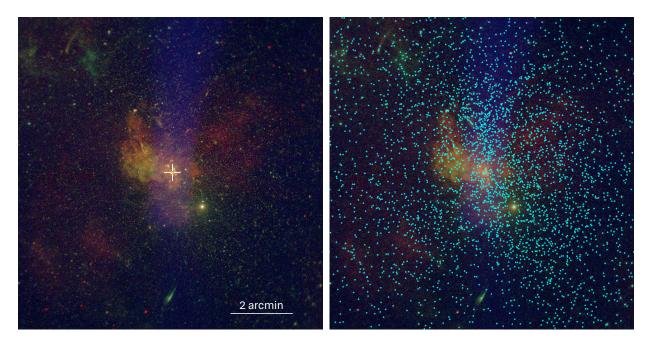
Ian N. Evans On behalf of the *Chandra* Source Catalog team



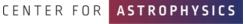
Chandra Source Catalog Release 2.1

- Uniformly calibrated observations
 - Uniform calibrations and processing using state-of-the-art Bayesian algorithms
- Extensive set of tabulated properties
 - Position, extent, photometry, variability, hardness ratio, spectral parameters in multiple energy bands
- Science-ready FITS data products
 - Per source / detection / field / stacked field event files, images, backgrounds, calibrations, regions, local PSFs, spectra, light curves, photometry probability density functions, sensitivity, extended source polygons
- Current catalog release
 - Version 2.1, minor version 2.1.1, released
 2024 October 18

- Stacked imaging observations
 - Co-added exposure times up to ~6.7 Ms
- Catalog limiting sensitivity
 - Estimated source flux required to detect a point source (on a 3.22 × 3.22 arcsec HEALPIX grid)
- Total sky coverage
 - 730 deg² (681 deg² ACIS; 67 deg² HRC-I)

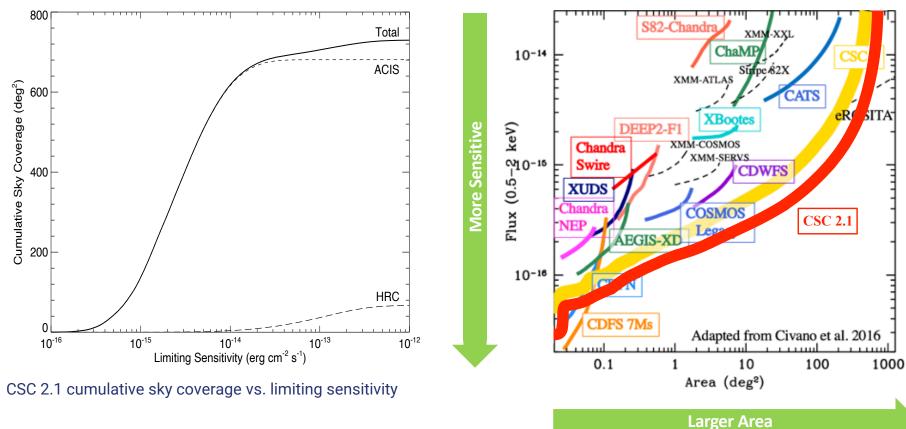

CSC 2.1 Number of Sources/Detections

Source Detection Threshold



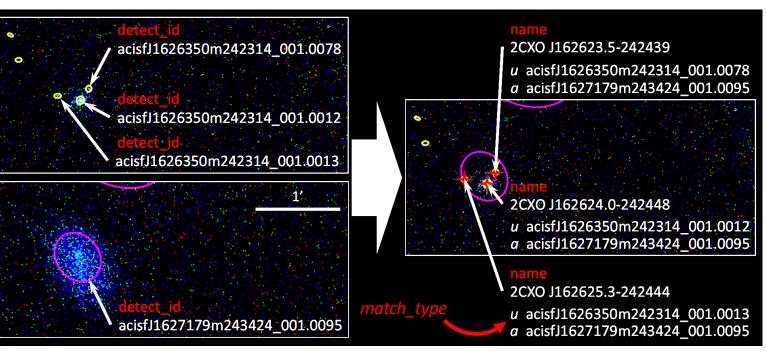
- **Outstanding sensitivity in heavily crowded fields** due to *Chandra*'s arcsecond spatial resolution on-axis combined with very low instrumental backgrounds
 - \Rightarrow CSC point source detection limit is ~4–5 X-ray photons over much of the field and for most exposure times

Far Left: Cutout of ~3 Ms observation stack (a co-add of 86 observations) from CSC 2.1, centered on Sgr A*


Left: CSC 2.1 identifies ~3,300 compact X-ray sources in this region roughly a dozen times more X-ray sources than have been detected by any other mission

Sky Coverage and Compact Detection Sensitivity

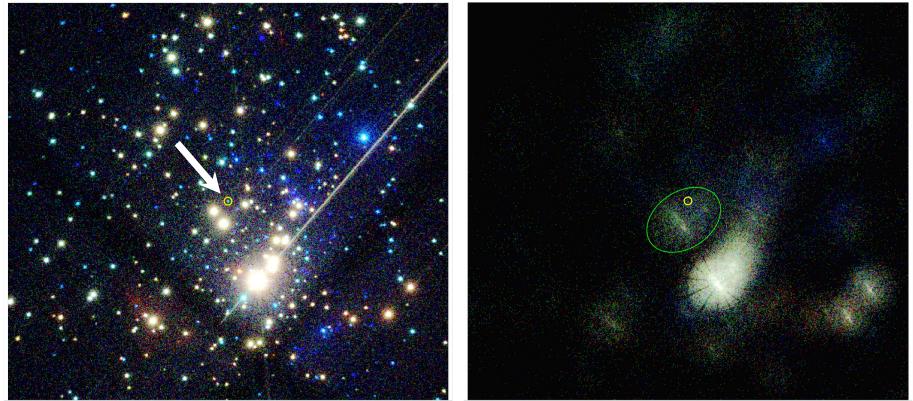
CHANDRA


HARVARD & SMITHSONIAN

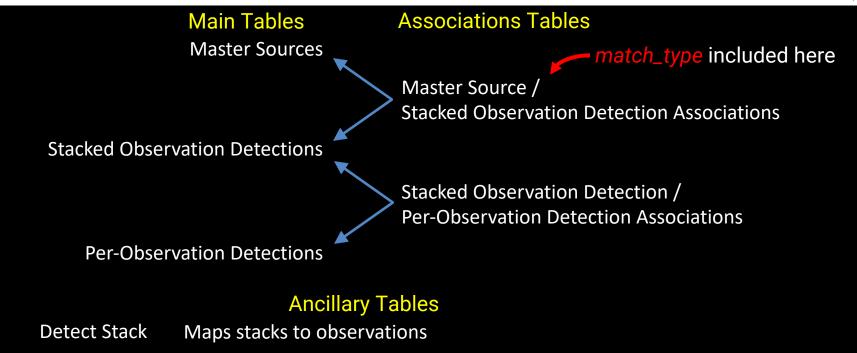
ASTROPHYSICS

CENTER FOR

Detections vs. Sources

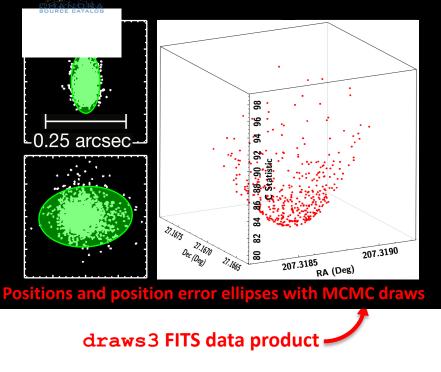

- Detections are photon blobs on the detector; sources are best estimates of X-ray emitters on the sky
- Source \Leftrightarrow detection linkages are managed automatically by the catalog
- Matching detections to identify sources is a many-to-many problem
- *match_type* identifies type of linkage between detections and sources

Detections vs. Sources


Confusing sources and detections is the most common issue seen in helpdesk questions

CENTER FOR **ASTROPHYSICS**

Chandra Source Catalog Tables

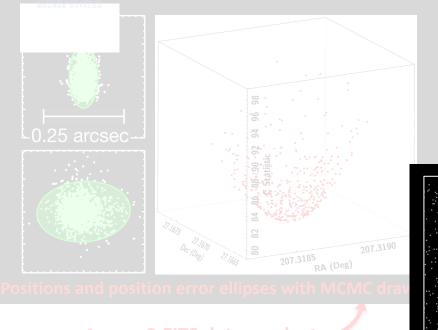

Valid Stack Identifies observations in a stack where the detection is valid

Likely Stack Identifies observation-set in a stack that maximizes detection likelihood

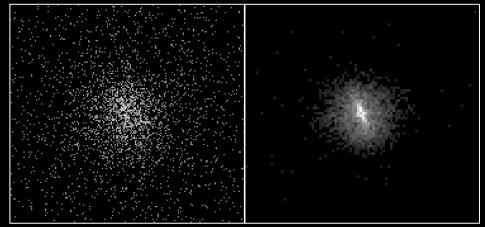
Limiting Sensitivity Estimated detection-threshold point source flux (3.22×3.22 arcsec HEALPIX grid)

CENTER FOR ASTROPHYSICS

- Properties are measured/derived for individualand stacked-observation detections as well as for master sources by *simultaneously analyzing* individual-observation detections
- Numeric properties have associated independent lower and upper confidence intervals
- Most properties are computed in 6 energy bands:

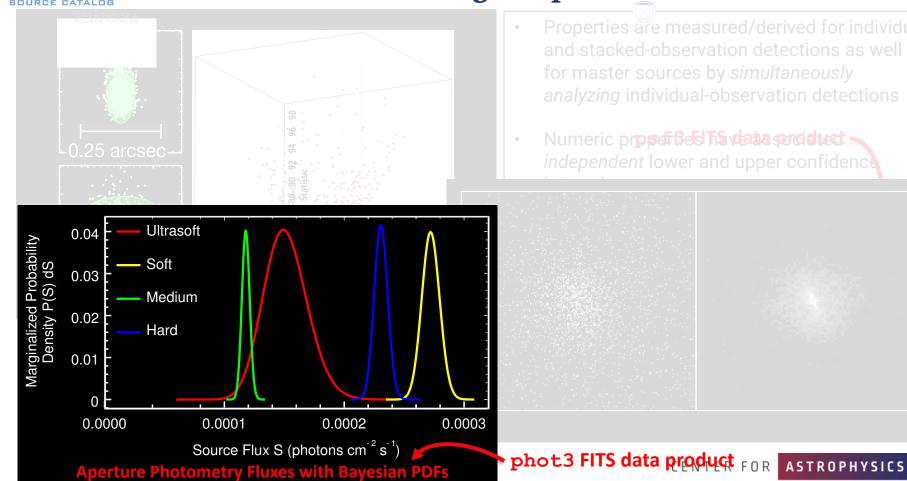

		<u>ACIS: ult</u> rasoft	0.
ER	FOR	ASTROPHYSICS	0.
		medium	1.
		hard	2.
		broad	0.
		HRC: wide	~(

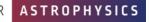
0.2-0.5 keV 0.5-1.2 keV 1.2-2.0 keV 2.0-7.0 keV 0.5-7.0 keV ~0.1-10.0 keV

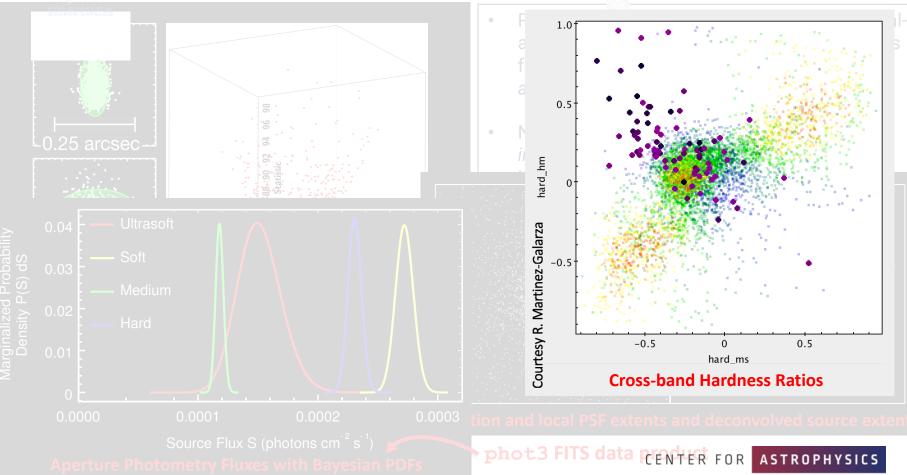


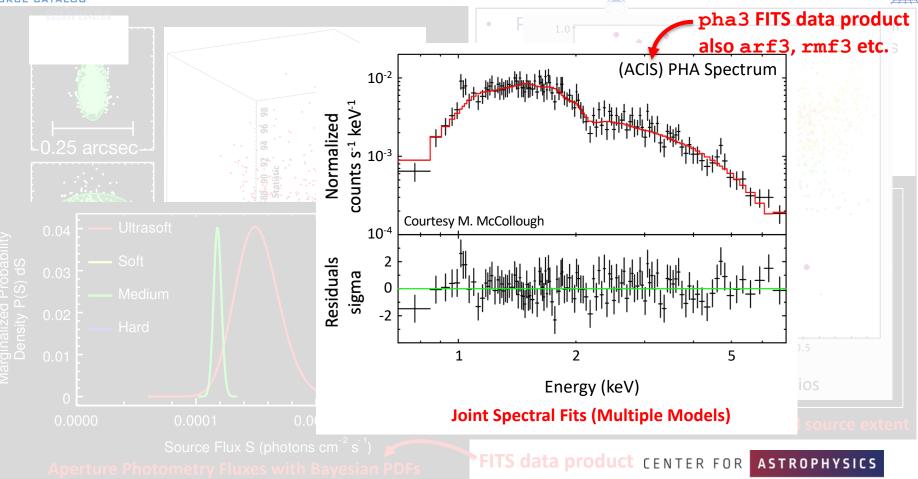
 Properties are measured/derived for individualand stacked-observation detections as well as for master sources by simultaneously analyzing individual-observation detections

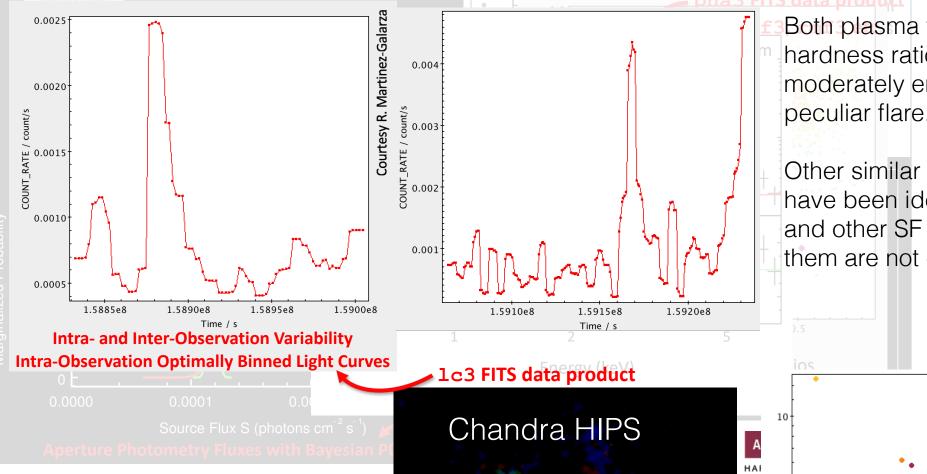
Numeric pr**psf3 FITS data product** independent lower and upper confidence




Detection and local PSF extents and deconvolved source extent

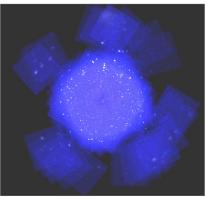



CHANDRA

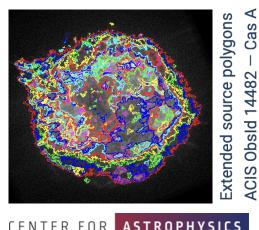

CHANDRA

Aarginalized Probability

CHANDRA



Source Detection

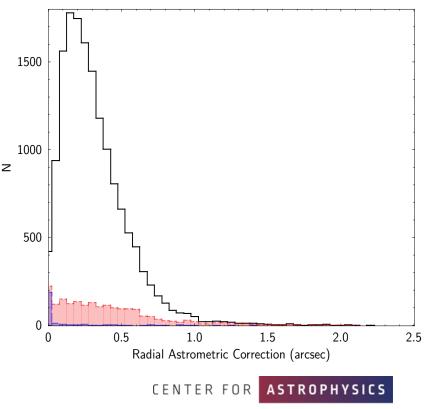

- Observations using the same instrument that have pointings within 60 arcsec are stacked prior to source detection
 - X-ray to x-ray detection matching to align individual observations
- Candidate compact source detection combines wavelet and Voronoi algorithms with MLE fitting
 - Candidate compact detections are merged and then graded by MLE
 - MLE fits detections with local per-band PSF model and PSF model convolved with rotated elliptical Gaussian
 - All detection and MLE fit information available in mrgsrc3 data product

Detections graded by highest MLE fit likelihood

- **TRUE** threshold \Rightarrow false source rate ~0.1 per field
- MARGINAL threshold \Rightarrow false source rate ~1 per field
- FALSE not included in catalog (available in mrgsrc3 data product)
- Highly extended source detection uses Voronoi algorithm
 - Simplified convex hull representation in catalog
 - Polygons at various contour levels available in poly3 data product

Dbservation stack acisfJ0332281m274818_002 00 observations, 6.69 Ms

ARD & SMITHSONIAN


CSC 2.1 astrometry is tied to Gaia-CRF3

- Observation stacks are matched to Gaia directly or via AllWISE (X-ray to optical matches)
- Extensive automatic and manual QA to ensure robust solutions
- · All data products have updated astrometry
- 95% confidence systemic error 0.29 arcsec per axis
- Individual source position error estimates have MLE fit position error added in quadrature

Above Right: Magnitudes of individual observation astrometric corrections required to tie observation stacks to Gaia-CRF3

Red: observations for which manual QA was required (either at individual observation or stacked observation level)

Blue: observations for which absolute astrometric correction could not be determined due to insufficient matches

Bayesian Blocks

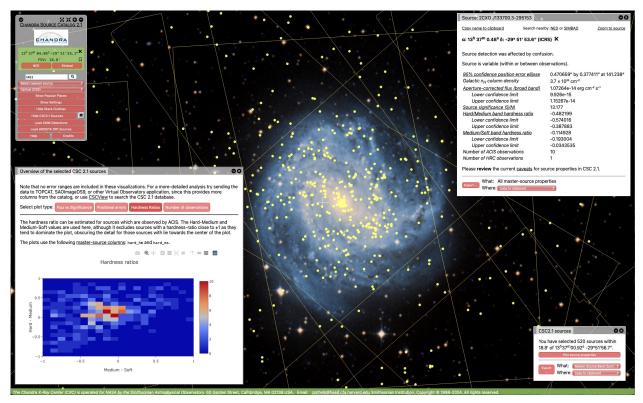
• Detections of the same source with consistent multi-band aperture photometry are analyzed together to increase S/N

CHANDRA

- Grouping is based on a multi-band Bayesian Blocks analysis
- Source aperture photometry and derived properties (e.g., hardness ratios, spectral fits) are populated from the longest duration Bayesian Block
 - Properties for all blocks are available in the blocks3 data product
- Source temporal variability properties are computed using all observations

Above: Marginalized probability density functions (MPDFs) for ACIS broad band energy flux in 7 observations contributing to master source 2CXO J004152.6-092213 Green, blue, red indicate different Bayesian Blocks (longest block is green in this example)

The black curve is the master source "best-estimate" MPDF, which combines data from all observations included in that block



Catalog User Interfaces

- CSC WWT visualizer
- CSCview data-mining interface
- IVOA standard interfaces (TAP, SCS, SIAP) provide access to Jupyter notebooks using PyVO
- Simple web form
- Web command line
- CIAO scripting & ds9

WWT provides a visual interface to CSC 2.1 data See <u>https://cxc.cfa.harvard.edu/csc/wwt.html</u> CENTER FOR ASTROPHYSICS

Summary

- CSC 2.1 released April 2024 and includes public data from 2000–2021 inclusive
 - Minor update 2.1.1 released October 2024 corrected some source names and populated missing (incorrectly null) properties
- Multiple interfaces available, including WWT, simple web form, CSCview, scripting, IVOA compliant (e.g., for use with PyVO)
- CSC 2.1 cross-matches with other catalogs will be available soon
- For more information see the catalog website https://cxc.cfa.harvard.edu/csc/

Please respond to the *Chandra* Source Catalog Workshop Questionnaire

The Chandra Source Catalog is developed and made available to the community by the Smithsonian Astrophysical Observatory's Chandra X-ray Center, which operates the Chandra X-ray Observatory for and on behalf of the National Aeronautics and Space Administration (NASA)

CENTER FOR

Backup Slides

Data Products

Master Source Properties

 Source name, position and position errors, significance, source flags, multi-band deconvolved extent, multi-band aperture photometry (photon and energy fluxes, spectral model fluxes [multiple spectral models]), hardness ratios, spectral model fits [multiple spectral models], multi-band intra- and inter-observation temporal variability

Stacked-Observation Detection Properties

 Position and position errors, multi-band significance, detection flags and codes, multi-band deconvolved extent, multi-band aperture photometry (net counts and count rates, photon and energy fluxes), aperture parameters, hardness ratios, multi-band intra- and inter-observation temporal variability

Per-Observation Detection Properties

Detector position, multi-band significance, detection flags and codes, multi-band raw, PSF, and deconvolved extent, multi-band aperture photometry (total counts, net counts and count rates, photon and energy fluxes, spectral model fluxes [multiple spectral models]), masked aperture parameters, spectral model fits [multiple spectral models], multi-band intra-observation temporal variability

Observation Data Products

- Observation event list, aspect solution and histogram, bad pixel map, FoV, pixel mask
- Multi-band images, background images, exposure maps, surface brightness contours

Stacked-Observation Data Products

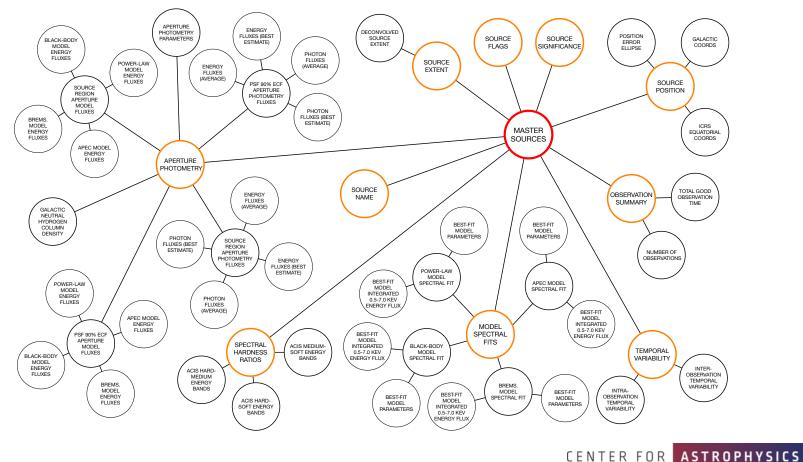
- Stack event list, FoV, merged detection list
- Multi-band images, background images, exposure maps, limiting sensitivity

Detection Region Data Products

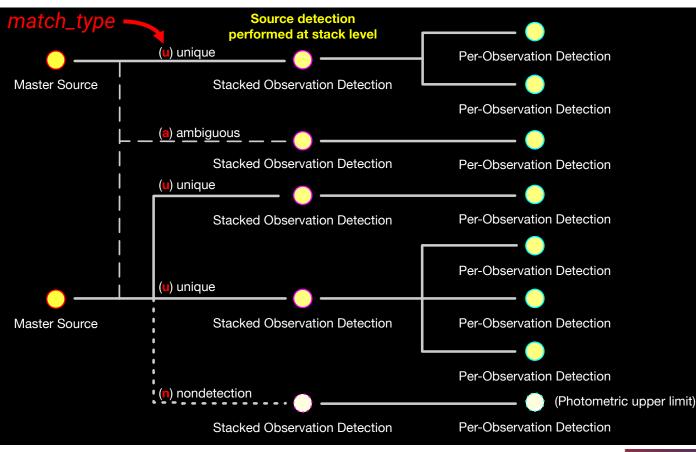
- Detection region stack and observation region definitions, event lists
- Multi-band per-stack and per-observation images, exposure maps, position error MCMC draws, aperture photometry PDFs
- Multi-band per-observation PSFs, light curves
- Per-observation PHA spectrum, RMF, ARF

Source Level Data Products

• Aperture photometry PDFs, per-Bayesian block properties (aperture photometry fluxes, model energy fluxes, spectral fits, hardness ratios), extended source convex hull polygons


CENTER FOR ASTROPHYSICS

Master Sources Databased Properties

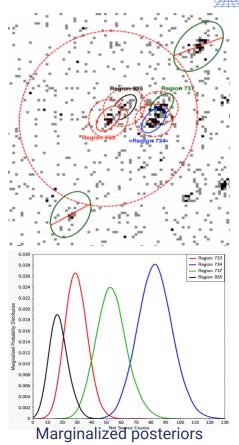


Source/Detection Hierarchy

ASTROPHYSICS

CENTER FOR

Aperture Photometry


- Aperture photometry PDFs determined using Bayesian model from Primini & Kashyap 2014 ApJ 796, 24
- Photometry for multiple detections with overlapping apertures, nearby source apertures, and background region, are solved for simultaneously
- Joint posterior for source fluxes and background flux (for a single observation):

$$P(s_1 \dots s_n, b | C_1 \dots C_n, B) = K \times P(b) P_{Pois}(B | \phi) \prod P(s_i) P_{Pois}(C_i)$$
$$\theta_i = E_i \times \left[\sum_{j=1}^n f_{ij} s_j + \Omega_i b \right]; \phi = E_b \times \left[\sum_{i=1}^n g_i s_i + \Omega_b b \right]$$

- Counts in overlapping regions are assigned to the brightest source
- Master source flux for source s_k in an *n*-source bundle is determined from the Bayesian block with the largest exposure:

$$P(s_{k}|\{C_{i}^{j}\},\{B^{j}\}) \cong P(s_{k}) \prod_{j=1}^{m} \left[P_{Pois}(B^{j}|\hat{\phi}^{j}) \times P_{Pois}(C_{k}^{j}|\hat{\theta}_{k}^{j}) \prod_{i=1, i \neq k}^{n} P_{Pois}(C_{i}^{j}|\hat{\theta}_{i}^{j}) \right]$$

Posteriors are optimized and sampled using MCMC in Sherpa

CENTER FOR **ASTROPHYSICS**

 θ_i)