

The most distant relativistic jet resolved with Chandra

Luca Ighina CfA-SAO + INAF-Brera A. Moretti, F. Tavecchio, A. Caccianiga (INAF-Brera) C. Spingola, D. Dallacasa (INAF-IRA) et many al.

25 Years of Science with Chandra

CENTER FOR

ASTROPHYSICS

HARVARD & SMITHSONIAN

luca.ighina@cfa.harvard.edu

Large-scale relativistic jets

PKS J0637-752 @ z=0.65

XJET: https://hea-www.harvard.edu/XJET/ Massaro F., Cheung C., Harris D.

Powerful X-ray emission observed hundreds of kilo-parsecs away from the central engine

¿ Origin ?

no seed photons from other AGN components. Synchrotron self-Compton unphysical

Chandra 25 — 06/12/2024

CHANDRA

X-RAY OBSERVATORY

>120 X-ray jets

IC / CMB interaction

Tavecchio (2000) & Celotti et al. (2001)

Inverse Compton interaction electrons within the jet with the Cosmic

Microwave Background (CMB) assuming Γ ~10–20 at kpc-scales

Radio and X- γ -rays produced by the same electrons —> model their emission to constrain important physical parameters: Power jets carry on kpc-scales and available for feedback

IC / CMB interaction

Tavecchio (2000) & Celotti et al. (2001)

Inverse Compton interaction electrons within the jet with the Cosmic

Microwave Background (CMB) assuming Γ ~10–20 at kpc-scales

Problems/Challenges

Physical assumptions:

- Highly relativistic jets (Γ ~10-20) at kpc-scales
- Many low energy electrons ($\gamma \sim 10$) -> large power

Observational constraints:

- Morphology (e.g. Reddy et al. 2021)
- Polarisation (e.g. Cara et al. 2013)

– γ -rays upper limits from FERMI-LAT

IC/CMB or Synchrotron ?

See talk by E. Meyer

IC/CMB ruled out in many systems at z<1 based on the non-detection of high γ -rays

> emission with Fermi-LAT (see Breiding et al. 2022)

i Another mechanism at place !

Second population of electrons, extremely energetic up to $\gamma \sim 10^{8-9}$ (~100TeV), which emits in the X-rays trough synchrotron (e.g. Harris & Krawczynski 2002)

How are they accelerated ? See e.g. Stawarz et al. 2002, Tavecchio et al. 2021

Chandra 25 — 06/12/2024

IC/CMB where to look IC/CMB unavoidable What is its contribution to the total X-ray emission? Different contributions = different physical conditions

1) $U_{CMB} \propto (1+z)^4$

PSO J0309+27 @ z=6.1

One of the only two z>6 blazars

One of the brightest quasars in the radio and Xray band at z>6

Powerful radio jet on VLBI scales (~500pc)

PSO J0309+27 @ z=6.1 in the X-rays

Spingola et al. 2020

Multi-scale and multi-frequency radio jet

LOFAR-VLBI 0.3 arcsec 144 MHz

+ e-MERLIN data at 1.5 and 6GHz obtained $\rightarrow 0.05-0.2$ arcsec

Extended Jet SED modelling

1) X-ray emission fully consistent with the **IC/CMB** without requiring extreme conditions (Γ ~2)

 $U_{CMB}(z = 6.1) \approx 350 \times U_{CMB}(z = 0.65)$

2) 2nd population of <u>electrons cannot be</u> accelerated up to very-high energies (see Tavecchio 2021)

IC/CMB cooling timescale:

$$\tau \approx 2.3 \times 10^{12} \Gamma^{-2} \gamma^{-1} (1+z)^{-4}$$
 yr
~100 yr (Γ =2, γ =10⁶, z=6.1)

X-ray emission vs redshift

What is the mechanism responsible for the high-energy emission of large-scale jets ? Both IC/CMB and Synchrotron Synchrotron dominant at low-z Boosts IC/CMB & $U_{CMB} \propto (1+z)^4$ quenches Synchro. IC/CMB dominant at high-z Extremely low statistics at z>2! 120ksec with Chandra to observe 2<z<3.5 kpc-scale radio jets (PI Ighina)

Impact on the observed X-ray space density

Overall X-ray emission (resolved and not) of jetted quasars increases as a function of redshift Ighina et al. 2019, 2021b,

Zhu et al. 2021

Affects the observed evolution of jetted quasars and their SMBHs

i Thank you for the attention ! luca.ighina@cfa.harvard.edu

- Chandra —> only X-ray telescope to resolve and study relativistic jets at kpc-scale;
- Detection of an X-ray jet at $z=6.1 \rightarrow$ The high-energy emission from relativistic jets is evolving as a function of redshift
- This evolution can impact the observed space density evolution of jetted systems with z
- Deeper radio+X-ray observations of PSO J0309+27 will allow us to constrain important physical parameters of jets (e.g. power) up to $z\sim 6!$

Direct observation of an extended X-ray jet at z = 6.1

The impact of the CMB on the evolution of high-z blazars

L. Ighina⁽⁾,^{1,2} A. Caccianiga⁽⁾,¹ A. Moretti,¹ S. Belladitta,^{1,2} R. Della Ceca¹ and A. Diana⁽⁾

L. Ighina^{1,2}, A. Moretti¹, F. Tavecchio³, A. Caccianiga¹, S. Belladitta^{1,2}, D. Dallacasa^{4,5}, R. Della Ceca¹, T. Sbarrato³, and C. Spingola⁵

Tavecchio et al. 2021

Γ_b	θ	$\gamma_{\rm cut}~(\times 10^5)$	K	<i>n</i> _{sh}	В	δ	R	$ au_{ m inj}$	t	P _{jet}
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
1.7	20	4	0.45	2.5	13	2.5	2×10^{21}	5×10^{2}	10	2.2

Table 2. Parameters of the model. [1]: Jet bulk Lorentz factor; [2]: viewing angle (deg); [3]: cutoff electron Lorentz factor of the shock component; [4]: normalisation of the shock electron energy distribution (particle cm⁻³); [5]: slope of the shock electron energy distribution; [6]: magnetic field (μ G); [7]: Doppler factor; [8]: jet radius (cm); [9]: injection timescales for the shear acceleration in units of the light-crossing time, r_i/c (where r_i is the radius of the jet); [10]: time in units of the light-crossing time, r_i/c . [11]: jet power (10⁴⁶ erg s⁻¹).

PKS 0605-08 \rightarrow offset Reddy et al. 2021

Figure 1. Using LIRA to infer an offset in a low-count Chandra image of PKS 0605-08. With the VLA 5 GHz radio contours overlaid, (a) a merged 62.8 ks observation binned by a factor of 1/20 and (b) a 2 ks observation binned by a factor of 1/2. The solid circle indicates the region used to extract the spectrum of the core and the green dot indicates the centroid of the dashed-green ellipse. (c) The average added component of the 2 ks observation. The yellow X marks the centroid of the dashed-green ellipse, which differs from the radio peak by $\sim 0.9^{\prime\prime}$. (d) The longitudinal intensity profile of knot B computed using the deep observation (dashedgreen rectangle in (a)). The X-rays peak upstream of the radio (Sambruna et al. 2004), thereby confirming the offset as inferred using LIRA. (e) The posterior

PKS 1136-135 \rightarrow polarisation

Cara et al. 2013

Figure 5. Intensity (black curves) and polarization degree (red curves) of the IC/CMB emission from a relativistic jet as a function of observing frequency. Data points present the HST results for knot A obtained in this paper. We show plots for jet bulk Lorentz factor $\Gamma = 20$ and 40, with beaming factor $\delta = \Gamma$ and $\delta = \Gamma/2$. See Section 4.1 for discussion.

Chandra 125 ksec

PSO J352.4034–15.3373 at z=5.8

IC/CMB model

A fraction (A₀) of the X-ray emission is produced trough the interaction via Inverse Compton (IC) between the Cosmic Microwave Background (CMB) photons and the electrons within the most extended parts (kilo-parsec scales) of the jet

Since $U_{CMB} \propto (1+z)^4$ ------

$$\frac{L_X}{L_R}(z) = \frac{L_X}{L_R}(z=0)[(1-A_0) + A_0(1+z)^4]$$

X-ray emission associated increases with redshift too

e.g. Wu et al. 2013

 A_0 = relative importance of the IC/CMB at z=0