CENTER FOR

ASTROPHYSICS

HARVARD & SMITHSONIAN

Shedding light on the dark matter paradigm with Chandra

Julia Sisk Reynes (CfA), Chris Reynolds (UMD), James Matthews (Oxford, UK), M C David Marsh (Stockholm, Sweden) Andy Fabian (Cambridge, UK), Helen Russell (Nottingham, UK), Dan Schwartz and Anna Barnacka (CfA), Cristiana Spingola and Giulia Migliori (INAF, Bologna)

- Introduction: The dark matter problem 1.
- ***** From Zwicky and Rubin to today

2. Shedding light on dark matter with Chandra THE DETERA ***** (WIMPs) + sterile neutrinos + axions

- 3. What does the future hold?

Outline

RAS Astronomy & Geophysics article, December 2024, now available!

Introduction

The dark matter problem

***** Galaxy rotation curves

Fritz Zwicky

The dark matter problem (II)

***** Bullet cluster

- ***** Gravitational lensing
- * Cosmic microwave background

25 Years of Science with Chandra | Boston, MA | 4 December 2024

D. Clowe et al (2006), 648, L109-L113

Advantages

* Produced thermally

* Cosmic abundance

* Predicted by SUSY

The WIMP story

Fermi Galactic Center excess

Aalbers et al (2023), Phys. Rev. Lett. 131, 041002 [+ Papers by R. Leane & T. Slayter]

Claimed detections

***** XMM-Newton

- Perseus (inc. cored)
- M31 lacksquare
- Stacked clusters

***** Chandra

- Perseus (ACIS-S, ACIS-I)
- Deep Fields (ACIS-I)

***** Hitomi & XRISM

• (?) 3.44 - 3.47 keV CX?

The story with axions

Advantages

* Solve the strong charge-parity problem

***** QCD axion: well-constrained

 $f_{\rm a}[{\rm GeV}^{-1}] \approx 1/g_{{\rm a},i}[{\rm GeV}^{-1}]$ Coupling constant with *i*

* Non-thermal axion production: Abbott & Sikivie (1983); Dine & Fischler (1983); Preskill et al. (1983)

25 Years of Science with Chandra | Boston, MA | 4 December 2024

Chadha-Day et al. (2022), Sci. Adv, 8, 8

Dark matter axions (II)

Axion production

e.g. stellar cores

Cosmic magnetic fields

CAST experiment at CERN [+ Papers by G. Raffelt]

Dark matter and stringy axions (III)

 10^{-1}

 10^{-10} .

 10^{-11}

 10^{-12}

 10^{-13}

 $g_{\mathrm{a}\gamma}[\mathrm{GeV}$

strength,

upling

Leading bounds on light axions from Chandra/Grating observations of bright cluster-hosted AGN

> H1821+643 (H1821) Sisk Reynes et al. (2022), MNRAS, 510, 1

> NGC1275 Reynolds et al. (2020), ApJ, 890, 1

²⁵ Years of Science with Chandra | Boston, MA | 4 December 2024

Axion distortions in the spectrum of H1821 (IV)

Closing remarks

An exciting future ahead

CXC (NASA/J.Sanders/A.Fabian et al.)

The Sounds of Feedback: Deep and Wide Imaging of the Cool Core of the **Perseus Cluster**

25 Years of Science with Chandra | Boston, MA | 4 December 2024

For Initiative II: Deep Observation of a Galaxy Cluster to Understand Key Physical Processes, the selected proposal is:

Additional 3 Ms ACIS-I observations of Perseus will open up a window to study:

- * Axions (intracluster *B*-field models)
- * Sterile neutrinos (along with XRISM)
- Chandra Legacy Program (PI: Andy Fabian) ₩ Start: December 2024!

Fuzzy dark matter and strong lensing

- * Induces substructure at ~kpc scales; $m_{\rm a} \sim 10^{-22} \ {\rm eV}$
- * May solve the "cusp vs. core problem" in LCDM
- * Is viable; plus dark matter may be a particle "cocktail"
- * Could explain anomalous flux ratios + position offsets in lensed images of strongly lensed quasars

HS 0810+2554

Amruth et al. (2023), Nat Ast., 7

Conclusions

* The nature of dark matter remains unresolved

- Push towards searching for a *lighter* (sub-GeV) dark matter candidate • Astrophysical searches play a key role in complementing laboratory DM searches • Model-dependent, we must explore a wide range of parameters (masses, couplings)

* Chandra has played a key role in searching for:

- Sterile neutrinos (Perseus; Deep Fields)
- Axions (cluster-hosted AGN; magnetic white dwarfs)

* Upcoming DM studies with Chandra have a promising agenda in view of:

- Perseus Chandra Legacy Program (PI Andy Fabian)

Strongly lensed quasars > Chandra data (PI Dan Schwartz, + Anna Barnacka & Cristiana Spingola)

Additional slides

Fuzzy dark matter and strong lensing

Powell et al. (2023), MNRAS, 524, 1

25 Years of Science with Chandra | Boston, MA | 4 December 2024

MG J0751+2716

The WIMP story

LUX-ZEPLIN exclusion

25 Years of Science with Chandra | Boston, MA | 4 December 2024

Aalbers et al (2023), Phys. Rev. Lett. 131, 041002

[+ Papers by *R*. Leanne & *T*. Slayter]

The sterile neutrino story 100 **Advantages**

* Explains sum of active neutrino masses

* Elusive, only gravity

Why do we need Physics BSM?

String compactifications

• Cosmic birefringence in CMB Diego-Palazuelos et al. (2022), Phys. Rev. Lett, 128, 9 Minami and Komatsu, 2020, Phys. Rev. Lett, 125, 22

• TeV-scale transparency De Angelis et al. (2011), Phys. Rev. D, 84, 10 Dessert et al. (2022), Phys. Rev. D, 105, 10

- Stellar cooling / Extra-galactic supernovae Raffelt (1990), Phys. Rep., 198, 1-2 Meyer et al. (2020), Phys. Rev. Lett., 124, 23
- Foreground structure for lensed quasar Amruth et al. (2023), Nat. Ast., 7

Axion dark matter and dark energy **Constraints from the CMB**

New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data

Yuto Minami*

High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Eiichiro Komatsu[†]

Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany and Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, The University of Tokyo, Kashiwa 277-8583, Japan (Dated: November 24, 2020)

Minami and Komatsu, 2020, Phys. Rev. Lett, 125, 22

***** Cosmic birefringence in CMB

Parity-violating physics

* Effects on the matter power spectrum

Dictated by the axion mass > λ_{dBg}

Hlozek et al. (2015), Phys. Rev. D, 91, 10

Modeling the ICM field: cell-based approach See Matthews et al. [inc. Sisk-Reynes] (2022), ApJ, 930, 1 for discussions

Field strength > drawn from assumption

r = 10 kpc

 $r_{\rm max} = 1.5 \ {\rm Mpc}$

Kale and Parekh, 2016, MNRAS, 469, 3

Photon-axion mixing predictions with MHD simulations

***** MHD simulation of an ICM-like environment

* Externally-driven turbulence in a box of L = 200 kpc

Mapping axion signals to B-fields in a Coma-like cluster $P_{\mathrm{a}\gamma}(\eta_{\mathrm{a}}) = \frac{g_{\mathrm{a}\gamma}^{2}}{4} |\tilde{B}(\eta_{\mathrm{a}})|^{2}$

Hard tails are induced by non-Gaussianity > large coherence lengths + field strengths

Churazov et al. (2021), A&A, 651, A41

Steinwandel et al. (2022), ApJ, 933, 131

Probing axions with the ICM magnetic field $B_{\rm ICM} \sim \mathcal{O}(1-10 \ \mu {\rm G})$ $P_{\rm a\gamma} \sim (g_{\rm a\gamma} \ B \ L_{\rm coh})^2$ $L_{\rm coh} \sim \mathcal{O}(1 - 100 \text{ kpc})$

 $m_{\rm a} < \omega_{\rm ICM}$

Observed Flux (telescope) Observed X-ray flux > $F_{obs}(E) = F_{AGN}(E) \times P_{a\gamma}(E, g_{a\gamma}, B_{ICM}, n_{ICM})$

Leading constraints on axions from H1821+643

on Sisk-Reynes et al. (2022), MNRAS, 514, 2. Credit: R.Smith/H.Russell.

Implications for string theories

Gendler et al. (2023), 2309.13145