XMM-Newton Observations of a High-Velocity Cloud in the Magellanic Stream

David Henley

Collaborators: Robin Shelton (UGA)

Kyujin Kwak (UNIST, Korea)

High-Velocity Clouds (HVCs)

- Tobias Westmeier, CSIRO Australia Telescope National Facility
- Based on the Leiden/Argentine/Bonn Survey (Kalberla et al. 2005, A&A 440, 775) and the Milky Way model of P. Kalberla (Kalberla et al. 2007, A&A, in press).

- Interstellar clouds moving at >~ 90 km s⁻¹ relative to LSR
- Multiple possible origins
 - Galactic fountains
 - Infalling extragalactic material
 - Material stripped from satellites

X-rays from HVCs

Complex C – *ROSAT* All-Sky Survey (Kerp et al. 1999; Shelton et al. 2012)

Data – Model (10⁻⁶ counts s⁻¹ arcmin⁻²)

Tobias Westmeier, CSIRO Australia Telescope National Facility
Based on the Leiden/Argentine/Bonn Survey (Kalberla et al. 2005, A&A 440, 775)
and the Milky Way model of P. Kalberla (Kalberla et al. 2007, A&A, in press).

X-rays from HVCs

XMM-Newton Spectrum of MS30.7

(Henley, Shelton & Kwak 2014, ApJ, in press; arXiv:1406.6363)

- $T = 3.7 \times 10^6 \text{ K}$
- EM = 2×10^{-3} cm⁻⁶ pc
- $L_{0.4-2.0} = 8 \times 10^{33} \text{ erg s}^{-1}$

(Henley, Shelton & Kwak 2014, ApJ, in press; arXiv:1406.6363)

$$T = 3.7 \times 10^6 \text{ K}$$

$$EM = 2 \times 10^{-3} \text{ cm}^{-6} \text{ pc}$$

$$L_{0.4-2.0} = 8 \times 10^{33} \text{ erg s}^{-1}$$

- Strong shocks
- Shock heating hot gas
- Charge exchange
- Magnetic reconnection

(Henley, Shelton & Kwak 2014, ApJ, in press; arXiv:1406.6363)

$$T = 3.7 \times 10^6 \text{ K}$$

$$EM = 2 \times 10^{-3} \text{ cm}^{-6} \text{ pc}$$

$$L_{0.4-2.0} = 8 \times 10^{33} \text{ erg s}^{-1}$$

Strong shocks

 $T \sim 2 \times 10^6 \text{ K}$

Too soft

Shock heating hot gas

EM $\sim 10^{-5}$ cm⁻⁶ pc Too faint

- Charge exchange
- Magnetic reconnection

(Henley, Shelton & Kwak 2014, ApJ, in press; arXiv:1406.6363)

$$T = 3.7 \times 10^6 \text{ K}$$

$$EM = 2 \times 10^{-3} \text{ cm}^{-6} \text{ pc}$$

$$L_{0.4-2.0} = 8 \times 10^{33} \text{ erg s}^{-1}$$

Strong shocks

- $T \sim 2 \times 10^6 \text{ K}$
- Too soft

Shock heating hot gas

EM $\sim 10^{-5}$ cm⁻⁶ pc Too faint

Charge exchange

- $L \sim 10^{33} \text{ erg s}^{-1}$
- Too faint

Magnetic reconnection

(Henley, Shelton & Kwak 2014, ApJ, in press; arXiv:1406.6363)

$$T = 3.7 \times 10^6 \text{ K}$$

$$EM = 2 \times 10^{-3} \text{ cm}^{-6} \text{ pc}$$

$$L_{0.4-2.0} = 8 \times 10^{33} \text{ erg s}^{-1}$$

Strong shocks

 $T \sim 2 \times 10^6 \text{ K}$

Too soft

Shock heating hot gas

- $EM \sim 10^{-5} cm^{-6} pc$
- Too faint

Charge exchange

- $L \sim 10^{33} \text{ erg s}^{-1}$
- Too faint

- Magnetic reconnection
 - Temperatures of several × 10⁶ K attainable (Zimmer et al. 1997)

(Henley, Shelton & Kwak 2014, ApJ, in press; arXiv:1406.6363)

$$T = 3.7 \times 10^6 \text{ K}$$

$$EM = 2 \times 10^{-3} \text{ cm}^{-6} \text{ pc}$$

$$L_{0.4-2.0} = 8 \times 10^{33} \text{ erg s}^{-1}$$

Strong shocks

 $T \sim 2 \times 10^6 \text{ K}$

Too soft

Shock heating hot gas

EM $\sim 10^{-5}$ cm⁻⁶ pc Too faint

Charge exchange

- $L \sim 10^{33} \text{ erg s}^{-1}$
- Too faint

Magnetic reconnection

- $L_{\text{mag}} = (1 \times 10^{35} \text{ erg s}^{-1}) (B / 1 \mu\text{G})^2$
- Temperatures of several × 10⁶ K attainable (Zimmer et al. 1997)
- More than enough power available
- Potential tool for constraining B in halo

Magnetic Reconnection on Larger Scales: Elliptical Galaxies in the IGM

$$L_{
m mag} \sim (10^{41} {
m \ erg \ s^{-1}}) \left(rac{B}{3 \ \mu
m G}
ight)^2 \left(rac{r}{20 {
m \ kpc}}
ight)^2 \left(rac{v}{200 {
m \ km \ s^{-1}}}
ight)$$

Magnetic Reconnection on Larger Scales: Elliptical Galaxies in the IGM

$$L_{
m mag} \sim (10^{41} {
m \ erg \ s^{-1}}) \left(rac{B}{3 \ \mu
m G}
ight)^2 \left(rac{r}{20 {
m \ kpc}}
ight)^2 \left(rac{v}{200 {
m \ km \ s^{-1}}}
ight)$$

 $B = 3 \mu G$

Summary

- X-ray enhancement observed toward MS30.7 (Bregman et al. 2009)
- XMM spectrum: $T = 3.7 \times 10^6 \text{ K}$ $L_{0.4-2.0} = 8 \times 10^{33} \text{ erg s}^{-1}$
- Shock heating and charge exchange cannot account for observations
- Magnetic reconnection could plausibly power emission
 - Resistive MHD simulations needed
 - Potential tool for constraining B in halo
- Magnetic reconnection on galactic scales
 - If intergalactic $B \sim \text{few } \mu\text{G}$, L_{mag} is significant fraction of L_{χ}
 - Heating via reconnection may be important on galactic scales