

The Gaseous Halo of NGC 891

Edmund Hodges-Kluck Joel Bregman

University of Michigan

Agenda

- Galaxy Halos
- NGC 891 as an interesting case
- Halo Metallicity
 - X-ray Measurements
 - Metallicity in the cool gas
 - (Possible) Interpretation

Halos are a reservoir of baryons

Galaxy Halos

 R_{vir} ~ 200-400 kpc 10-50% of baryons expected from cosmic infall

 $R_{disk} \sim 10 \text{ kpc}$ 10-20% of baryons

Galaxy Halos

Why?

Infalling gas heated to few x 10⁶ K for L_{*} galaxies

Dynamic halo; hot+cold gas

Quasi-static halo $t_{cool} \ge t_{Hubble}$

Galaxy Halos

What is the halo composition?

- Inflowing/outflowing material has similar n, T
- Metallicity (Z) distinguishes the two
- But, halo is very tenuous $(n \sim 10^{-2} 10^{-3} \text{ cm}^{-3})$ and hard to see
- Is most of the hot material outflow or inflow?
- What is the connection, if any, between the hot and cool components?

Galaxy Halos

What is the halo composition?

QSO absorption lines

- Probes warm/cool gas
- Few quasars near galaxy
- Few galaxies with multiple quasars
- Hot halo emission

Metallicity from CIE model

- EM ∞ n_en_H (small)
- Few normal galaxies with X-ray halos
- Probes densest regions

NGC 891

- One of the best objects to study diskhalo cycle:
 - Nearby (10 Mpc), edge-on MW analog
 - X-ray brightest halo of nearby, normal galaxies (Bregman & Pildis 1994)
 - Giant HI halo (10⁹ M_☉)
 - Halo has exceptional data sets at multiple wavelengths
 - Active star formation (4 M_☉/yr; Popescu 2004)

Temperature

 Extract halo spectrum

2. Fit with thermal model

Assess fit/ Constrain Z

- Brighter, inner X-rays associated with bulge and star forming regions, also have high $N_{\rm H}$
- A cleaner test obtained in the "outer halo" seen by XMM-Newton

1T fits to XMM+CXO spectra prefer Z < Z_{\odot} to 3 σ (5 σ joint fit)

Apparent low Z not likely caused by these systematics:

- Unaccounted bkg
- Abundance table
- Absorption model
- Calibration issues
- Energy resolution
- But, we have a Suzaku program to confirm

"Reality checks" favor 1T model

- Limit on cooling rate from UV
 - -0 v_I from Otte et al. 2003 indicates < 2-3 M_{\odot}/yr (2T model expects >3)
- Observed vs. expected scale height
 - —H_{obs} (4-5 kpc) measured assuming hydrostatic equilibrium
 - $-H_{exp}$ from cooling time (3 kpc for 2T)
- Are we really hiding most of the emission behind Galactic HI column??

Model	$kT \pmod{\text{keV}}$	\dot{M} $(M_{\odot}\mathrm{yr}^{-1})$	$0.01 - 3.0 \mathrm{keV} L_X \ (\mathrm{erg} \mathrm{s}^{-1})$	H (kpc)	$M_{ m tot} \ (M_{\odot})$
1-T 2-T 2-T	$0.2 \\ 0.1 \\ 0.25$	$0.4 \\ 3 \\ < 0.05$	$6 \times 10^{39} 4 \times 10^{40} < 2 \times 10^{39}$		3×10^{8} 1×10^{8} $< 10^{8}$

Cool Halo Metallicity

But... UV indicators suggest solar metallicity in *cool* gas

- Bregman+2013 find $^{\sim}Z_{\odot}$ in quasar absorption lines with an impact parameter of 5 kpc
- We also developed a new method to constrain
 Z in an imaging sense using dust-scattered light
- Halos are dusty (Menard+2010); dust visible in:
 - Emission (mid-IR; sky is bright; stars)
 - Extinction (optical; Ménard+2010)
 - Scattering (σ_{scat} high in UV; sky is dark)

Galaxy Spectrum + Dust Type = Observed Spectrum

Cool Halo Metallicity

$$\begin{split} L_{halo}(\lambda) &= L_{gal}(\lambda)(1 - e^{-\tau(\lambda)}) \\ &\approx L_{gal}(\lambda)\tau(\lambda) \end{split}$$

$$= L_{gal}(\lambda)\sigma_{scat}(\lambda)N_H \frac{M_{dust}}{M_{gas}}$$

Fit model SED to data (galaxy template+dust model)

MCRT model/infer intrinsic L_{gal}

Contours: 10¹⁹, 10²⁰, 10²¹, 10²² cm⁻²

If the cool gas originated in the galaxy, where is the hot gas that put it into the halo?

Cold Halo

$$M \approx 1.2 \times 10^{9} M_{Sun}$$

$$\frac{dM}{dt} \approx 30 M_{Sun} / yr$$

$$Z \approx Z_{Sun}$$

Hot Halo

$$M \approx 3 \times 10^8 M_{Sun}$$

$$\frac{dM}{dt} \approx 0.4 M_{Sun} / yr$$

$$Z \approx 0.1 Z_{Sun}$$

How are hot and cold halos related?

- Is the X-ray metallicity wrong (cf. Li & Wang 2013)?
- Are metals in the hot gas depleted onto dust?
- Did a small amount of accretion trigger a large amount of star formation (halo may not be in a steady state)?
- ... are they unrelated?

Summary

- NGC 891 is a Milky Way analog with a giant HI halo and bright X-ray halo
- The hot halo appears to be accreted material (calorimeter could settle debate)
- If so, the hot halo out to 200+ kpc is likely accreted
- The cold halo is not accreted, and it is not clear how the gas got there
- NGC 891 is an important object, but the disk—halo cycle is messy

- Metallicity is a key indicator that is directly measurable in the X-rays
- At CCD resolution, good S/N needed to distinguish spectral shape

TABLE 3 1-T HALO MODEL FITS

Spectrum	$(10^{20} \mathrm{cm}^{-2})$	kT_1 (keV)	$Z_1 \ (Z_{\odot})$	(10^{20}cm^{-2})	kT_2 (keV)	$Z_2 \ (Z_{\odot})$	χ^2
Outer Halo $(z > 2.8 \mathrm{kpc})$							
Chandra MOS 1+2 pn Joint	6.5(f) 6.5(f) 6.5(f) 6.5(f)	$0.24^{+0.07}_{-0.03}$ 0.21 ± 0.02 $0.21^{+0.03}_{-0.02}$ 0.21 ± 0.02 Induction	$0.04^{+0.05}_{-0.02} \\ 0.11^{+0.05}_{-0.04} \\ 0.08^{+0.05}_{-0.03} \\ 0.08 \pm 0.03$	- - -	- - -	- - -	102.6 (105) 164.5 (180) 166.1 (175) 426.2 (460)
Inner Halo $(0.6 < z < 2.8 \mathrm{kpc})$							
Chandra MOS 1+2 pn Joint	$10_{-4}^{+20} \\ 24_{-18}^{+27} \\ 18_{-12}^{+22} \\ 16_{-7}^{+16}$	0.22 ± 0.02 0.19 ± 0.05 0.19 ± 0.04 0.21 ± 0.02	$0.12_{-0.06}^{+0.10} \\ 0.10_{-0.07}^{+0.08} \\ 0.11_{-0.07}^{+0.40} \\ 0.11_{-0.07}^{+0.11} \\ 0.11_{-0.06}^{+0.11}$	$77_{-10}^{+12} 77(f) 77(f) 78_{-10}^{+11}$	$0.58^{+0.06}_{-0.03}$ 0.58 (f) 0.58 (f) 0.58 ± 0.05	1.0(f) 1.0(f) 1.0(f) 1.0(f)	74.0 (79) 155.5 (152) 117.2 (97) 342.15 (328)

Note. — The MOS and pn fits include a TBabs*diskpbb component with all parameters except flux frozen as described in the text. The fits corresponding to these models are shown in Figure 6. Errors are quoted at the 90% confidence interval based on the *Xspec* task *steppar*, and (f) designates a frozen parameter.

- Galex and Swift UVOT sensitivity limited by cirrus, foreground fluctuations
- Swift UVOT has persistent scattered-light artifacts, but these can be corrected by subtracting scaled templates in each filter

 Bright sources also produce their own rings (ghost images) that must be removed separately